在平面与平面的交线上. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,若,且

(1)求动点的轨迹的方程;

(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值。

查看答案和解析>>

在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为

(Ⅰ)求抛物线C的方程;

(Ⅱ)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;

(Ⅲ)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,的最小值。

查看答案和解析>>

(12分)在平面直角坐标系xOy中,已知三点A(-1,0),B(1,0),,以A、B为焦点的椭圆经过点C。
(I)求椭圆的方程;
(II)设点D(0,1),是否存在不平行于x轴的直线与椭圆交于不同两点M、N,使
?若存在,求出直线斜率的取值范围;若不存在,请说明理由:
(III)对于y轴上的点P(0,n),存在不平行于x轴的直线与椭圆交于不同两点M、N,使,试求实数n的取值范围。

查看答案和解析>>

在平面直角坐标系中,已知焦距为4的椭圆的左、右顶点分别为,椭圆的右焦点为,过作一条垂直于轴的直线与椭圆相交于,若线段的长为

(1)求椭圆的方程;

(2)设是直线上的点,直线与椭圆分别交于点,求证:直线必过轴上的一定点,并求出此定点的坐标;

 

查看答案和解析>>

在平面直角坐标系xoy中,已知定点A(-4,0),B(4,0),动点P与A、B连线低斜率之积为

(1)求点P的轨迹方程;

(2)设点P的轨迹与y轴负半轴交于点C,半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得弦长为

    (Ⅰ)求圆M的方程;

(Ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如

果不存在,说明理由。

 

查看答案和解析>>


同步练习册答案