利用空间向量法:=(其中()为异面直线所成角.分别表示异面直线的方向向量). 查看更多

 

题目列表(包括答案和解析)

精英家教网(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

如图,四边形ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2
2
,E,F分别是AD,PC的中点.建立适当的空间坐标系,利用空间向量解答以下问题:
(Ⅰ)证明:PC⊥平面BEF;
(Ⅱ)求平面BEF与平面BAP夹角的大小.

查看答案和解析>>


同步练习册答案