[解析](1)取FC的中点G , 连结OG.BG.∵O为DF的中点, ∴OG//DC且OG=DC . 查看更多

 

题目列表(包括答案和解析)

当实数取何值时,复数(其中是虚数单位).

(1)是实数;(2)是纯虚数;(3)等于零.

【解析】(1)根据实数的等价条件:复数的虚部为零,列出方程求出m的值;

(2)根据纯虚数的等价条件:复数的虚部不为零、实部为零,列出方程求出m的值;

(3)根据实部和虚部都为零,列出方程求出m的值.

 

查看答案和解析>>

椭圆的左、右焦点分别为,一条直线经过点与椭圆交于两点.

⑴求的周长;

⑵若的倾斜角为,求的面积.

【解析】(1)根据椭圆的定义的周长等于4a.

(2)设,则,然后直线l的方程与椭圆方程联立,消去x,利用韦达定理可求出所求三角形的面积.

 

查看答案和解析>>

已知函数

(Ⅰ)求函数的最小正周期;

(Ⅱ)求函数在区间上的最大值和最小值.

【解析】(1)

所以,的最小正周期

(2)因为在区间上是增函数,在区间上是减函数,

故函数在区间上的最大值为,最小值为-1.

 

查看答案和解析>>

已知是等差数列,其前n项和为Sn是等比数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,证明).

【解析】(1)设等差数列的公差为d,等比数列的公比为q.

,得.

由条件,得方程组,解得

所以.

(2)证明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:数学归纳法)

①  当n=1时,,故等式成立.

②  假设当n=k时等式成立,即,则当n=k+1时,有:

   

   

,因此n=k+1时等式也成立

由①和②,可知对任意成立.

 

查看答案和解析>>

如图,已知点,圆是以为直径的圆,直线,(为参数).

(1)以坐标原点为极点,轴正半轴为极轴,建立极坐标系,求圆的极坐标方程;

(2)过原点作直线的垂线,垂足为,若动点满足,当变化时,求点轨迹的参数方程,并指出它是什么曲线.

【解析】(1)圆C的普通方程为,    (2’)

极坐标方程为。        (4’)

(2)直线l的普通方程为,        (5’)

                      (7’)

           (9’)

点M轨迹的参数方程为,图形为圆

 

查看答案和解析>>


同步练习册答案