∴OM⊥平面EFCD. 又∵OM平面MDF, ∴平面MDF⊥平面EFCD.(3)过B作BH⊥DM交DM的延长线于H , 连结FH . ∵平面EFBA⊥平面ABCD, FB⊥AB. ∴FB⊥平面ABCD .∴BH为FN在平面ABCD上的射影. ∴FH⊥DH .∴∠FHB为二面角F-DM-C的平面角, 设AB=1 , 查看更多

 

题目列表(包括答案和解析)

(2012•黄浦区一模)已知两点A(-1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到
2
倍后得到点Q(x,
2
y
)满足
AQ
BQ
=1

(1)求动点P所在曲线C的轨迹方程;
(2)过点B作斜率为-
2
2
的直线l交曲线C于M、N两点,且满足
OM
+
ON
+
OH
=
0
,又点H关于原点O的对称点为点G,试问四点M、G、N、H是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系xOy中.椭圆C:
x2
2
+y2=1
的右焦点为F,右准线为l.
(1)求到点F和直线l的距离相等的点G的轨迹方程.
(2)过点F作直线交椭圆C于点A,B,又直线OA交l于点T,若
OT
=2
OA
,求线段AB的长;
(3)已知点M的坐标为(x0,y0),x0≠0,直线OM交直线
x0x
2
+y0y=1
于点N,且和椭圆C的一个交点为点P,是否存在实数λ,使得
OP
2
OM
ON
,若存在,求出实数λ;若不存在,请说明理由.

查看答案和解析>>

(2012•淄博一模)在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的
2
倍后得到点Q(x,
2
y)
,且满足
AQ
BQ
=1

(I)求动点P所在曲线C的方程;
(II)过点B作斜率为-
2
2
的直线l交曲线C于M、N两点,且
OM
+
ON
+
OH
=
0
,又点H关于原点O的对称点为点G,试问M、G、N、H四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系xOy中.椭圆的右焦点为F,右准线为l.
(1)求到点F和直线l的距离相等的点G的轨迹方程.
(2)过点F作直线交椭圆C于点A,B,又直线OA交l于点T,若,求线段AB的长;
(3)已知点M的坐标为(x,y),x≠0,直线OM交直线于点N,且和椭圆C的一个交点为点P,是否存在实数λ,使得,若存在,求出实数λ;若不存在,请说明理由.

查看答案和解析>>

已知长方形ABCD,AB=2
2
,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.椭圆Γ以A、B为焦点,且过C、D两点.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)过点P(0,2)的直线l交椭圆Γ于M,N两点,是否存在直线l,使得OM⊥ON?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>


同步练习册答案