(Ⅱ)∵AC⊥平面SDB.AC平面ABC.∴平面SDB⊥平面ABC.过N作NE⊥BD于E.NE⊥平面ABC.过E作EF⊥CM于F.连结NF.则NF⊥CM.∴∠NFE为二面角N-CM-B的平面角.∵平面SAC⊥平面ABC.SD⊥AC.∴SD⊥平面ABC.又∵NE⊥平面ABC.∴NE∥SD. 查看更多

 

题目列表(包括答案和解析)

精英家教网在三棱锥P-ABC中,PA⊥平面ABC.
(1)若∠BAC=
π3
,AB=AC=PA=2,E、F分别为棱AB、PC的中点,求线段EF的长;
(2)求证:“∠PBC=90°”的充要条件是“平面PBC⊥平面PAB”.

查看答案和解析>>

如图,几何体SABC的底面是由以AC为直径的半圆O与△ABC组成的平面图形,SO⊥平面ABC,AB⊥BC,SA=SB=SC=A C=4,BC=2.
(l)求直线SB与平面SAC所成角的正弦值;
(2)求几何体SABC的正视图中△S1A1B1的面积;
(3)试探究在圆弧AC上是否存在一点P,使得AP⊥SB,若存在,说明点P的位置并证明;若不存在,说明理由.

查看答案和解析>>

(2013•成都一模)如图,在三棱锥S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,点P是SC的中点,则异面直线SA与PB所成角的正弦值为(  )

查看答案和解析>>

(2013•太原一模)已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,点D为AC的中点,A1D⊥平面ABC,A1B⊥ACl
(I)求证:AC1⊥AlC;
(Ⅱ)求三棱锥Cl-ABC的体积.

查看答案和解析>>

如图,已知斜三棱柱ABC-A1B1C1,∠BCA=90°AC=BC=a,A1在底面ABC上的射影恰为AC的中点D,又A1B⊥AC1
(Ⅰ)求证:BC⊥平面ACC1A1
(Ⅱ)求AA1与平面ABC所成的角;
(Ⅲ)求二面角B-AA1-C的正切值.

查看答案和解析>>


同步练习册答案