矩阵的逆矩阵是 . 查看更多

 

题目列表(包括答案和解析)

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
12
-14

(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

[选做题]在A、B、C、D四小题中只能选做两题,每小题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。

A.选修4 - 1:几何证明选讲

如图,在四边形ABCD中,△ABC≌△BAD

求证:ABCD

B.选修4 - 2:矩阵与变换

求矩阵的逆矩阵。

C.选修4 - 4:坐标系与参数方程

已知曲线C的参数方程为为参数,),求曲线C的普通方程。

D.选修4 - 5:不等式选讲

>0,求证:

查看答案和解析>>

[选做题]在A、B、C、D四小题中只能选做两题,每小题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
A.选修4 - 1:几何证明选讲
如图,在四边形ABCD中,△ABC≌△BAD

求证:ABCD
B.选修4 - 2:矩阵与变换
求矩阵的逆矩阵。
C.选修4 - 4:坐标系与参数方程
已知曲线C的参数方程为为参数,),求曲线C的普通方程。
D.选修4 - 5:不等式选讲
>0,求证:

查看答案和解析>>

[选做题]在A、B、C、D四小题中只能选做两题,每小题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
A.选修4 - 1:几何证明选讲
如图,在四边形ABCD中,△ABC≌△BAD

求证:ABCD
B.选修4 - 2:矩阵与变换
求矩阵的逆矩阵。
C.选修4 - 4:坐标系与参数方程
已知曲线C的参数方程为为参数,),求曲线C的普通方程。
D.选修4 - 5:不等式选讲
>0,求证:

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

A

C

B

D

C

B

A

二、填空题

13.      14. 7500       15. (-1,1)

16.       17.45o          18.

三、解答题

19解:(Ⅰ)

┅┅┅┅┅┅┅4分

因为,所以,所以

的取值范围为┅┅┅┅┅┅┅6分

(Ⅱ)因为,所以┅┅┅┅┅┅┅8分

所以的最小值为,当为等边三角形时取到. ┅┅┅┅┅┅┅12分

20(Ⅰ)证明(方法一)取中点,连接,因为分别为中点,所以,┅┅┅┅┅┅┅3分

所以,所以四边形为平行四边形,所以,又因为,所以;┅┅┅┅┅┅┅6分

(方法二)取中点,连接

因为分别为中点,所以

又因为分别为中点,所以┅┅┅┅┅┅┅3分

所以面

,所以┅┅┅┅┅┅6分

(方法三)取中点,连接

由题可得,又因为面

所以,又因为菱形,所以.

可以建立如图所示的空间直角坐标系

┅┅┅┅┅┅┅7分

不妨设

可得

,所以

所以,┅┅┅┅┅┅┅9分

设面的一个法向量为,则,不妨取,则,所以,又因为,所以.

┅┅┅┅┅┅┅12分

 

 

 

 

 

 

 

(Ⅱ)(方法一)

点作的垂线,连接.

因为

所以,所以

所以为二面角的平面角. ┅┅┅┅┅┅┅8分

 

因为面,所以点在面上的射影落在上,所以

所以,不妨设,所以,同理可得.┅┅┅┅┅┅┅10分

所以,所以二面角的大小为┅┅┅┅┅┅┅12分

(方法二)由(Ⅰ)方法三可得,设面的一个法向量为,则,不妨取,则.

┅┅┅┅┅┅┅8分

,设面的一个法向量为,则,不妨取,则.┅┅┅┅┅┅┅10分

所以,因为二面角为锐角,所以二面角的大小为┅┅┅┅┅┅┅12分

21解:

(Ⅰ)从盒中一次性取出三个球,取到白球个数的分布列是超几何分布,┅┅┅┅┅┅┅1分

所以期望为,所以,即盒中有 3个红球,2 个白球.┅┅┅┅┅┅┅3分

(Ⅱ)由题可得的取值为0,1,2,3.

,=,,

所以的分布列为

0

1

2

3

P

                                                          ┅┅┅┅┅┅┅11分

E =                                

答:红球的个数为2,的数学期望为2    ┅┅┅┅┅┅┅12分

22解:(Ⅰ)由可得,┅┅┅┅┅┅┅2分

,所以,┅┅┅┅┅┅┅4分

,所以

所以是等差数列,首项为,公差为1┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

23解:(Ⅰ)由题意可知,可行域是以及点为顶点的三角形,

,∴为直角三角形,     ┅┅┅┅┅┅┅2分

∴外接圆C以原点O为圆心,线段A1A2为直径,故其方程为

∵2b=4,∴b=2.又,可得

∴所求椭圆C1的方程是.           ┅┅┅┅┅┅┅4分

(Ⅱ)设A(x1,y1),B(x2,y2),,OA的斜率为,则PA的斜率为,则PA的方程为:化简为:,    

同理PB的方程为                ┅┅┅┅┅┅┅6分

又PA、PB同时过P点,则x1x0+y1y0=4,x2x0+y2y0=4,

∴AB的直线方程为:x0x+y0y=4               ┅┅┅┅┅┅┅8分

(或者求出以OP为直径的圆,然后求出该圆与圆C的公共弦所在直线方程即为AB的方程)

      从而得到

所以      ┅┅┅┅┅┅┅8分

当且仅当.           ┅┅┅┅┅┅┅12分

(或者利用椭圆的参数方程、函数求最值等方法求的最大值)

 

 

24解:(Ⅰ)┅┅┅┅┅┅┅2分

①当,即,在上有,所以单调递增;┅┅┅┅┅┅┅4分

②当,即,当时,在上有,所以单调递增;当时,在上有,所以单调递增;┅┅┅┅┅┅┅6分

③当,即

时,函数对称轴在y轴左侧,且,所以在上有,所以单调递增;┅┅┅┅┅┅┅8分

时,函数对称轴在右侧,且

两个根分别为,所以在上有,即单调递增;在上有,即单调递减.

综上:时,单调递增;时,单调递增,在单调递减. ┅┅┅┅┅┅┅10分

(Ⅱ)由(Ⅰ)可知当时,有极大值,极小值,所以

,又因为

┅┅┅12分

所以

=

同步练习册答案