(Ⅱ)求的数学期望. 查看更多

 

题目列表(包括答案和解析)

一次数学考试共有10道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.设计试卷时,安排前n道题使考生都能得出正确答案,安排8-n道题,每题得出正确答案的概率为
1
2
,安排最后两道题,每题得出正确答案的概率为
1
4
,且每题答对与否相互独立,同时规定:每题选对得5分,不选或选错得0分.
(1)当n=6时,
①分别求考生10道题全答对的概率和答对8道题的概率;
②问:考生答对几道题的概率最大,并求出最大值;
(2)要使考生所得分数的期望不小于40分,求n的最小值.

查看答案和解析>>

一次数学考试中有A,B,C三道填空题为选做题,规定每个考生必须也只需选做其中的两道题,已知甲、乙两名考生都随机地选做了其中的两道题.
(I)求考生甲选做了A题的概率; 
(II)求这三名学生中选做A题的人数ξ的分布列及期望Eξ.

查看答案和解析>>

某次数学考试中,从甲、乙两个班级各随机抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.

(I)从两班10名同学中各抽取一人,已知有人及格,求乙班同学不及格的概率;

(II)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为X,求X的分布列和期望

 

查看答案和解析>>

一次数学考试共有10道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.设计试卷时,安排前n道题使考生都能得出正确答案,安排8-n道题,每题得出正确答案的概率为数学公式,安排最后两道题,每题得出正确答案的概率为数学公式,且每题答对与否相互独立,同时规定:每题选对得5分,不选或选错得0分.
(1)当n=6时,
①分别求考生10道题全答对的概率和答对8道题的概率;
②问:考生答对几道题的概率最大,并求出最大值;
(2)要使考生所得分数的期望不小于40分,求n的最小值.

查看答案和解析>>

一次数学考试共有10道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的,设计试卷时,安排前n道题使考生都能得出正确答案,安排8-n道题,每题得出正确答案的概率为,安排最后两道题,每题得出正确答案的概率为,且每题答对与否相互独立,同时规定:每题选对得5分,不选或选错得0分。
(1)当n=6时,
①分别求考生10道题全答对的概率和答对8道题的概率;
②问考生答对几道题的概率最大,并求出最大值;
(2)要使考生所得分数的期望不小于40分,求n的最小值。

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

A

C

B

D

C

B

A

二、填空题

13.      14. 7500       15. (-1,1)

16.       17.45o          18.

三、解答题

19解:(Ⅰ)

┅┅┅┅┅┅┅4分

因为,所以,所以

的取值范围为┅┅┅┅┅┅┅6分

(Ⅱ)因为,所以┅┅┅┅┅┅┅8分

所以的最小值为,当为等边三角形时取到. ┅┅┅┅┅┅┅12分

20(Ⅰ)证明(方法一)取中点,连接,因为分别为中点,所以,┅┅┅┅┅┅┅3分

所以,所以四边形为平行四边形,所以,又因为,所以;┅┅┅┅┅┅┅6分

(方法二)取中点,连接

因为分别为中点,所以

又因为分别为中点,所以┅┅┅┅┅┅┅3分

所以面

,所以┅┅┅┅┅┅6分

(方法三)取中点,连接

由题可得,又因为面

所以,又因为菱形,所以.

可以建立如图所示的空间直角坐标系

┅┅┅┅┅┅┅7分

不妨设

可得

,所以

所以,┅┅┅┅┅┅┅9分

设面的一个法向量为,则,不妨取,则,所以,又因为,所以.

┅┅┅┅┅┅┅12分

 

 

 

 

 

 

 

(Ⅱ)(方法一)

点作的垂线,连接.

因为

所以,所以

所以为二面角的平面角. ┅┅┅┅┅┅┅8分

 

因为面,所以点在面上的射影落在上,所以

所以,不妨设,所以,同理可得.┅┅┅┅┅┅┅10分

所以,所以二面角的大小为┅┅┅┅┅┅┅12分

(方法二)由(Ⅰ)方法三可得,设面的一个法向量为,则,不妨取,则.

┅┅┅┅┅┅┅8分

,设面的一个法向量为,则,不妨取,则.┅┅┅┅┅┅┅10分

所以,因为二面角为锐角,所以二面角的大小为┅┅┅┅┅┅┅12分

21解:

(Ⅰ)从盒中一次性取出三个球,取到白球个数的分布列是超几何分布,┅┅┅┅┅┅┅1分

所以期望为,所以,即盒中有 3个红球,2 个白球.┅┅┅┅┅┅┅3分

(Ⅱ)由题可得的取值为0,1,2,3.

,=,,

所以的分布列为

0

1

2

3

P

                                                          ┅┅┅┅┅┅┅11分

E =                                

答:红球的个数为2,的数学期望为2    ┅┅┅┅┅┅┅12分

22解:(Ⅰ)由可得,┅┅┅┅┅┅┅2分

,所以,┅┅┅┅┅┅┅4分

,所以

所以是等差数列,首项为,公差为1┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

23解:(Ⅰ)由题意可知,可行域是以及点为顶点的三角形,

,∴为直角三角形,     ┅┅┅┅┅┅┅2分

∴外接圆C以原点O为圆心,线段A1A2为直径,故其方程为

∵2b=4,∴b=2.又,可得

∴所求椭圆C1的方程是.           ┅┅┅┅┅┅┅4分

(Ⅱ)设A(x1,y1),B(x2,y2),,OA的斜率为,则PA的斜率为,则PA的方程为:化简为:,    

同理PB的方程为                ┅┅┅┅┅┅┅6分

又PA、PB同时过P点,则x1x0+y1y0=4,x2x0+y2y0=4,

∴AB的直线方程为:x0x+y0y=4               ┅┅┅┅┅┅┅8分

(或者求出以OP为直径的圆,然后求出该圆与圆C的公共弦所在直线方程即为AB的方程)

      从而得到

所以      ┅┅┅┅┅┅┅8分

当且仅当.           ┅┅┅┅┅┅┅12分

(或者利用椭圆的参数方程、函数求最值等方法求的最大值)

 

 

24解:(Ⅰ)┅┅┅┅┅┅┅2分

①当,即,在上有,所以单调递增;┅┅┅┅┅┅┅4分

②当,即,当时,在上有,所以单调递增;当时,在上有,所以单调递增;┅┅┅┅┅┅┅6分

③当,即

时,函数对称轴在y轴左侧,且,所以在上有,所以单调递增;┅┅┅┅┅┅┅8分

时,函数对称轴在右侧,且

两个根分别为,所以在上有,即单调递增;在上有,即单调递减.

综上:时,单调递增;时,单调递增,在单调递减. ┅┅┅┅┅┅┅10分

(Ⅱ)由(Ⅰ)可知当时,有极大值,极小值,所以

,又因为

┅┅┅12分

所以

=

同步练习册答案