(Ⅱ)设椭圆C1的右焦点为F.点P为圆C上异于A1.A2的动点.过点P作圆C的切线.交直线于点Q.求证:直线PF与直线OQ垂直 查看更多

 

题目列表(包括答案和解析)

已知椭圆C1
x2
a2
+
y2
b2
=
1
 
 
(a>b>0)
右焦点F是抛物线C2y2=2p
x
 
 
(p>0)
的焦点,M(
2
3
,m)
是C1与C2在第一象限内的交点,且|MF|=
5
3

(Ⅰ)求C1与C2的方程;
(Ⅱ)设A(0,t)(t>0)为y轴上的动点,过点A作直线l与直线AF垂直,试探究直线l与椭圆C1的位置关系.

查看答案和解析>>

已知椭圆C1=1和圆C:x2+y2=4,且圆C与x轴交于A1,A2两点.
(1)设椭圆C1的右焦点为F,点P的圆C上异于A1,A2的动点,过原点O作直线PF的垂线交椭圆的右准线交于点Q,试判断直线PQ与圆C的位置关系,并给出证明;
(2)设点M(x,y)在直线x+y-3=0上,若存在点N∈C,使得∠OMN=60°(O为坐标原点),求x的取值范围.

查看答案和解析>>

设椭圆C1的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.

查看答案和解析>>

设椭圆C1的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.

查看答案和解析>>

(2005•海淀区二模)设椭圆C1的中心在原点,其右焦点与抛物线C2:y2=4x的焦点F重合,过点F与x轴垂直的直线与C1交于A、B两点,与C2交于C、D两点,已知
|CD|
|AB|
=
4
3

(Ⅰ)过点F且倾斜角为
π
3
的直线与C2:y2=4x交于P、Q两点,求|PQ|的值;
(Ⅱ)求椭圆C1的方程.

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

C

A

A

D

C

B

A

D

B

B

二、填空题

13.   14.     15.7500    16.

三、解答题

17.证明:(Ⅰ)取AB的中点M,连FM,MC, ┅┅┅┅2分

∵ F、M分别是AE、BA的中点  

∴ FM∥EB, FM=EB=CD, ┅┅┅┅┅┅┅4分

∵ EB、CD都垂直于平面ABC 

∴ CD∥BE∴ CD∥FM,

∴四边形FMCD是平行四边形,

∴ FD∥MC.又∵

∴FD∥平面ABC                 ┅┅┅┅┅┅┅6分          

(Ⅱ)∵M是AB的中点,CA=CB,

∴CM⊥AB, ┅┅┅┅┅┅┅8分

又  CM⊥BE, ∴CM⊥面EAB, ∴CM⊥BF, ∴FD⊥BF, ┅┅┅┅┅┅┅10分

∵F是AE的中点, EB=AB∴BF⊥EA. ∴BF⊥平面ADE      ┅┅┅┅┅┅┅12分

 

18解:

(Ⅰ)实数对

共16种不同的情况,有16条不同的直线.┅┅┅┅┅┅┅4分

当实数对时,直线的斜率,直线倾斜角大于

所以直线倾斜角大于的概率为;┅┅┅┅┅┅┅6分

(Ⅱ)直线在x轴上的截距与在y轴上截距之差,即,┅┅┅┅┅┅┅8分

当实数对,┅┅┅┅┅┅┅10分

所以直线在x轴上的截距与在y轴上截距之差小于7的概率为. ┅┅┅┅12分

 

19解:(1)

┅┅┅┅┅┅┅4分

因为,所以,所以

的取值范围为 ┅┅┅┅┅┅┅6分

(Ⅱ)因为,所以 ┅┅┅┅┅┅┅8分

所以的最小值为,当为等边三角形时取到. ┅┅┅┅┅┅┅12分

20解:(Ⅰ)的首项为,所以 ┅┅┅┅┅┅┅3分

所以,所以是等差数列,首项为,公差为1

┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即 ┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

21解:(Ⅰ)由题意可知,可行域是以及点为顶点的三角形,∵,∴为直角三角形,                 ┅┅┅┅┅┅┅2分

∴外接圆C以原点O为圆心,线段A1A2为直径,故其方程为

2a=4,∴a=2.又,可得

∴所求圆C与椭圆C1的方程分别是. ┅┅┅┅┅┅┅4分

(Ⅱ2) F,设,,

时,Q点为(),可得,∴PFOQ.

时,,可以解得,也有PFOQ.  ┅┅┅6分

时,OP的斜率为,则切线PQ的斜率为,则PQ的方程为:化简为:,          ┅┅┅8分

交得Q点坐标为             ┅┅┅10分

∴PFOQ.

综上,直线PF与直线OQ垂直.                       ┅┅┅12分

22解:(Ⅰ) ┅┅┅┅┅┅┅2分

①当,即,在R上有,所以在R单调递增;┅┅┅┅┅┅┅4分

②当,即,当时,在上有,所以在R单调递增;当时,在上有,所以在R单调递增;┅┅┅┅┅┅┅6分

③当,即

两个根分别为,所以在上有,即单调递增;

上有,即单调递减.┅┅┅┅┅┅┅8分

(Ⅱ)由(Ⅰ)可知当时函数有极值,

时,,所以不符合题意.

时,,此时函数的极值点都为正数

┅┅┅┅┅┅┅10分

有极大值,极小值,所以

又因为

所以

=,┅┅┅┅┅┅┅12分

,则,所以单调递增,所以,即极值之和小于. ┅┅┅┅┅┅┅14分

 

 

 

 

 

 


同步练习册答案