2009大连市高三双基考试 查看更多

 

题目列表(包括答案和解析)

在某市日前进行的2009年高三第二次模拟考中,参加考试的2000名理科学生的数学成绩在90—110分的人数为800人,统计结果显示,理科学生的数学成绩服从正态分布,则2000名理科学生的数学成绩不低于110分的人数是      

查看答案和解析>>

(银川一中2009届高三年级第一次模拟考试)已知函数.

(1)若;  

(2)求函数上最大值和最小值

查看答案和解析>>

 (北京市崇文区2009年3月高三统一考试理)已知 ,则的值为 (   )

A.             B              C.               D.

查看答案和解析>>

 (北京市崇文区2009年3月高三统一考试理)已知 ,则的值为 (   )

A.             B              C.               D.

查看答案和解析>>

某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在[120,130)内的频率;
(2)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为
100+1102
=105.)作为这组数据的平均分,据此,估计本次考试的平均分;
(3)利用频率分布表,计算样本的众数,中位数(保留两位有效小数).

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

C

A

A

D

C

B

A

D

B

B

二、填空题

13.   14.     15.7500    16.

三、解答题

17.证明:(Ⅰ)取AB的中点M,连FM,MC, ┅┅┅┅2分

∵ F、M分别是AE、BA的中点  

∴ FM∥EB, FM=EB=CD, ┅┅┅┅┅┅┅4分

∵ EB、CD都垂直于平面ABC 

∴ CD∥BE∴ CD∥FM,

∴四边形FMCD是平行四边形,

∴ FD∥MC.又∵

∴FD∥平面ABC                 ┅┅┅┅┅┅┅6分          

(Ⅱ)∵M是AB的中点,CA=CB,

∴CM⊥AB, ┅┅┅┅┅┅┅8分

又  CM⊥BE, ∴CM⊥面EAB, ∴CM⊥BF, ∴FD⊥BF, ┅┅┅┅┅┅┅10分

∵F是AE的中点, EB=AB∴BF⊥EA. ∴BF⊥平面ADE      ┅┅┅┅┅┅┅12分

 

18解:

(Ⅰ)实数对

共16种不同的情况,有16条不同的直线.┅┅┅┅┅┅┅4分

当实数对时,直线的斜率,直线倾斜角大于

所以直线倾斜角大于的概率为;┅┅┅┅┅┅┅6分

(Ⅱ)直线在x轴上的截距与在y轴上截距之差,即,┅┅┅┅┅┅┅8分

当实数对,┅┅┅┅┅┅┅10分

所以直线在x轴上的截距与在y轴上截距之差小于7的概率为. ┅┅┅┅12分

 

19解:(1)

┅┅┅┅┅┅┅4分

因为,所以,所以

的取值范围为 ┅┅┅┅┅┅┅6分

(Ⅱ)因为,所以 ┅┅┅┅┅┅┅8分

所以的最小值为,当为等边三角形时取到. ┅┅┅┅┅┅┅12分

20解:(Ⅰ)的首项为,所以 ┅┅┅┅┅┅┅3分

所以,所以是等差数列,首项为,公差为1

┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即 ┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

21解:(Ⅰ)由题意可知,可行域是以及点为顶点的三角形,∵,∴为直角三角形,                 ┅┅┅┅┅┅┅2分

∴外接圆C以原点O为圆心,线段A1A2为直径,故其方程为

2a=4,∴a=2.又,可得

∴所求圆C与椭圆C1的方程分别是. ┅┅┅┅┅┅┅4分

(Ⅱ2) F,设,,

时,Q点为(),可得,∴PFOQ.

时,,可以解得,也有PFOQ.  ┅┅┅6分

时,OP的斜率为,则切线PQ的斜率为,则PQ的方程为:化简为:,          ┅┅┅8分

交得Q点坐标为             ┅┅┅10分

∴PFOQ.

综上,直线PF与直线OQ垂直.                       ┅┅┅12分

22解:(Ⅰ) ┅┅┅┅┅┅┅2分

①当,即,在R上有,所以在R单调递增;┅┅┅┅┅┅┅4分

②当,即,当时,在上有,所以在R单调递增;当时,在上有,所以在R单调递增;┅┅┅┅┅┅┅6分

③当,即

两个根分别为,所以在上有,即单调递增;

上有,即单调递减.┅┅┅┅┅┅┅8分

(Ⅱ)由(Ⅰ)可知当时函数有极值,

时,,所以不符合题意.

时,,此时函数的极值点都为正数

┅┅┅┅┅┅┅10分

有极大值,极小值,所以

又因为

所以

=,┅┅┅┅┅┅┅12分

,则,所以单调递增,所以,即极值之和小于. ┅┅┅┅┅┅┅14分

 

 

 

 

 

 


同步练习册答案