取.显然面 查看更多

 

题目列表(包括答案和解析)

水车问题.

水车是一种利用水流的动力进行灌溉的工具,图1-6-5是一个水车的示意图,它的直径为3 m,其中心(即圆心)O距水面1.2 m.如果水车每4 min逆时针转3圈,在水车轮边缘上取一点P,我们知道在水车匀速转动时,P点距水面的高度h(m)是一个变量,显然,它是时间t(s)的函数.我们知道,h与t的函数关系反映了这个周期现象的规律.为了方便,不妨从P点位于水车与水面交点Q时开始记时(t=0).

首先,设法用解析式表示出这个函数关系,并用“五点法”作出这个函数在一个周期内的简图.

图1-6-5

其次,我们讨论如果雨季河水上涨或旱季河流水量减少时,所求得的函数解析式中的参数将发生哪些变化?若水车转速加快或减慢,函数解析式中的参数又会受到怎样的影响?

查看答案和解析>>

水车问题.

水车是一种利用水流的动力进行灌溉的工具,下图是一个水车的示意图,它的直径为3 m,其中心(即圆心)O距水面1.2 m.如果水车每4 min逆时针转3圈,在水车轮边缘上取一点P,我们知道在水车匀速转动时,P点距水面的高度h(m)是一个变量,显然,它是时间t(s)的函数.我们知道,h与t的函数关系反映了这个周期现象的规律.为了方便,不妨从P点位于水车与水面交点Q时开始记时(t=0).

  首先,设法用解析式表示出这个函数关系,并用“五点法”作出这个函数在一个周期内的简图.

  其次,我们讨论如果雨季河水上涨或旱季河流水量减少时,所求得的函数解析式中的参数将发生哪些变化?若水车转速加快或减慢,函数解析式中的参数又会受到怎样的影响?

查看答案和解析>>

鸡兔同笼

  你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一.大约在1 500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?

  你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

  解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.

  这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.这种思维方法叫化归法.

  化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题.

1.古代《孙子算经》就有这么好的解法——化归法,这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.对此,谈谈你的看法.

2.我国古代数学研究一直处于领先地位,现在有所落后了,对此,我们不应只感叹古人的伟大,而更应该树立为科学而奋斗终身的信心,同学们,你们准备好了吗?

查看答案和解析>>

已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。

第一问中,可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

第二问中,

假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得

代入1,2式中得到范围。

(Ⅰ) 可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

 (Ⅱ) 假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是

 

查看答案和解析>>

壮怀激烈千古恨 初出茅庐志已衰

  继萨凯里之后,大概又过了半个世纪.欧洲“数学之王”高斯的至友匈牙利数学家伏尔夫刚·鲍里埃,终身从事证明“第五公设”的研究,由于心血耗尽,毫无成效,便怀着沉重的心情,给那酷爱数学的儿子亚诺什·鲍耶(1802~1860)写信,希望小鲍耶“不要再做克服平行公理的尝试”.他忠告儿子说:“投身于这一贪得无度地吞人们的智慧、精力和心血的无底洞,白花时间在上面,一辈子也证不出这个命题来.”他满腹心酸地写到:“我经过了这个毫无希望的夜的黑暗,我在这里面埋没了人生的一切亮光、一切欢乐和一切希望.”最后告诫自己心爱的儿子说:“若再痴恋这一无止无休的劳作,必然会剥夺你生活的一切时间、健康、休息和幸福!”但是,年仅21岁的小鲍耶却是敢向“无底洞”觅求真知的探索者.他认真吸取前人失败的教训,初出茅庐就大显身手.小鲍耶匠心独运,大胆创新,决然将“第五公设”换成他自身的否定.从“三角形三个内角和小于180°”这一令人瞠目结舌的假设出发,建立起一套完整协调、天衣无缝的新几何体系.小鲍耶满怀激情地将自己的科学创见向父亲报捷.老伏尔夫刚以之见教于至友高斯,不久,高斯复信鲍里埃,信中写到:“如果我一开始便说我不能称赞这样的成果,你一定会感到惊讶.但是,我不能不这样说,因为称赞这些成果就等于称赞我自己.令郎的这些工作,他走过的路,以及所获得的成果,跟我过去30年至35年前的所思所得几乎一模一样.”高斯在回信结尾还开诚布公地提到:“我自己的著作,尽管写好的只是一部分,我本来也想发表,因为我怕引某些人的喊声,现在,有了朋友的儿子能够这样写下来,免得他与我一样湮没,那是使我非常高兴的.”这位当代数学大师恐怕做梦也没想到,他这封推心置腹的信,竟会一举撞毁初露锋芒的数坛新星!

  高斯的复信给小鲍耶带来意想不到的毁灭性打击.踌躇满志的鲍耶误认为高斯动用自己拥有的崇高权威来垄断和夺取这一新体系的发明优先权.为此,他痛心疾首,认为自己心血浇灌出来的成果和呕心沥血的辛勤工作,竟得不到大家的理解、支持和同情.于是郁郁寡欢,大失所望,发誓抛弃了一切数学研究.

1.对于“数学之王”高斯给鲍耶的回信,你有什么看法呢?如果你是高斯,你该怎样回信?

2.踌躇满志的鲍耶误认为“高斯动用自己拥有的崇高权威来垄断和夺取这一新体系的发明优先权”,进而“郁郁寡欢,大失所望,发誓抛弃了一切数学研究”.你又有何看法呢?假如你是鲍耶,你又该怎么做呢?

查看答案和解析>>


同步练习册答案