15. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

1.解:依题设有:     ………………………………………4分

 令,则           …………………………………………5分

           …………………………………………7分

  ………………………………10分

2.解:以有点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1),由

所以

为圆的直角坐标方程.  ……………………………………3分

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

3.(必做题)(本小题满分10分)

解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的, 则其概率为                …………………………………………4分

    答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为

(2)随机变量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴随机变量的分布列为

 

2

3

4

P

                    …………………………10分

4.(必做题)(本小题满分10分)

(1) 

              ……………………………………3分

(2)平面BDD1的一个法向量为

设平面BFC1的法向量为

得平面BFC1的一个法向量

  ∴所求的余弦值为    ……6分

(3)设

,由

    

时,

时,∴   ……………………………………10分


同步练习册答案