[答案]3.(2.) 查看更多

 

题目列表(包括答案和解析)

【答案】0<m<2.

【考点】二次函数的图象;反比例函数的图象.

【专题】图表型.

【分析】首先作出分段函数y的图象,根据函数的图象即可确定m的取值范围.

【解答】分段函数y的图象如右图所示:

故要使直线ymm为常数)与函数y的图象恒有三个不同的交点,常数m的取值范围为0<m<2,

故答案为:0<m<2.

【点评】本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.

查看答案和解析>>

【解题思路】(1)如下表

甲(s)

乙(t)

红桃3

红桃4

黑桃5

红桃3

红桃4

黑桃5

由上表可知:︱s-t︱≥1的概率= =    (也可画树形图求解)。

(2)方案A:如表

甲(花色)

乙(花色)

红桃3

红桃4

黑桃5

红桃3

同色

同色

不同色

红桃4

同色

同色

不同色

黑桃5

不同色

不同色

同色

由上表可得

方案B:如表

 甲

红桃3

红桃4

黑桃5

红桃3

3+3=6

3+4=7

3+5=8

红桃4

4+3=7

4+4=8

4+5=9

黑桃5

5+3=8

5+4=9

5+5=10

由上表可得

因为,所以选择A方案甲的胜率更高.

【答案】⑴⑵A方案,B方案,故选择A方案甲的胜率更高.

查看答案和解析>>

  已知△ABC中,∠BAC=90°, AB=AC. (1)(5分)如图,D为AC上任一点,连接BD,过A点作BD的垂线交过C点与AB平行的直线CE于点E.求证:BD=AE.

 

 

 

(2)(6分) 若点D在AC的延长线上,如图,其他条件同(1),请画出此时的图形,并猜想BD与AE是否仍然相等?说明你的理由.

 

【解析】(1)先证∠ABD=∠CAE,再证△ABD≌△CAE即可得出答案.

(2)根据题意画出图形,然后可根据△ABD≌△ACE得出结论

 

查看答案和解析>>

  已知△ABC中,∠BAC=90°, AB=AC. (1)(5分) 如图,D为AC上任一点,连接BD,过A点作BD的垂线交过C点与AB平行的直线CE于点E.求证:BD=AE.

 

 

 

(2)(6分) 若点D在AC的延长线上,如图,其他条件同(1),请画出此时的图形,并猜想BD与AE是否仍然相等?说明你的理由.

 

【解析】(1)先证∠ABD=∠CAE,再证△ABD≌△CAE即可得出答案.

(2)根据题意画出图形,然后可根据△ABD≌△ACE得出结论

 

查看答案和解析>>

如图,△ABC中,∠BAC=90°,AC=2,AB=,△ACD是等边三角形.

(1)求∠ABC的度数.

(2)以点A为中心,把△ABD顺时针旋转60°,

画出旋转后的图形.

(3)求BD的长度.

【解析】(1)利用正切的知识可得出答案.

(2)根据旋转角度、旋转中心、旋转方向找出各点的对称点,顺次连接即可;

(3)根据旋转的性质可得△ACE≌△ADB,从而确定∠EBC=90°,然后利用勾股定理即可解答

 

查看答案和解析>>


同步练习册答案