[答案] 当P在B点上方时.,当P在B点下方时. 查看更多

 

题目列表(包括答案和解析)

如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形
【小题1】如果
①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为   __________ ,线段的数量关系为          
②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
【小题2】如果是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.

查看答案和解析>>

如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形
【小题1】如果
①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为   __________ ,线段的数量关系为          
②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
【小题2】如果是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.

查看答案和解析>>

在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.

【感知】如图1,当点H与点C重合时,可得FG=FD.

【探究】如图2,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.

【应用】在图2中,当AB=5,BE=3时,利用探究结论,求FG的长.

 

查看答案和解析>>

在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.
【感知】如图1,当点H与点C重合时,可得FG=FD.

【探究】如图2,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.

【应用】在图2中,当AB=5,BE=3时,利用探究结论,求FG的长.

查看答案和解析>>

【答案】60°。

【考点】平行线的性质;三角形的外角性质.

【分析】利用三角形的一个外角等于与它不相邻的两个内角的和求出∠3的同位角的度数,再根据两直线平行,同位角相等即可求解.

【解答】如图,∵∠1=130°,∠2=70°,

∴∠4=∠1-∠2=130°-70°=60°,

ab

∴∠3=∠4=60°.

故答案为:60°.

【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,准确识图,理清图中各角度之间的关系是解题的关键.

查看答案和解析>>


同步练习册答案