18.解:(1)因为点的坐标为. 查看更多

 

题目列表(包括答案和解析)

已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),

α∈(,).

(1)若||=||,求角α的值;

(2)若·=-1,求的值.

【解析】第一问中利用向量的模相等,可以得到角α的值。

第二问中,·=-1,则化简可知结论为

解:因为点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),

α∈(,).||=|| 所以α=.

(2)因为·=-1,.

 

查看答案和解析>>

已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。

【解析】解:因为第一问中,利用椭圆的性质由   所以椭圆方程可设为:,然后利用

    

      椭圆方程为

第二问中,当为钝角时,,    得

所以    得

解:(Ⅰ)由   所以椭圆方程可设为:

                                       3分

    

      椭圆方程为             3分

(Ⅱ)当为钝角时,,    得   3分

所以    得

 

查看答案和解析>>

给出以下命题:
(1)α,β表示平面,a,b,c表示直线,点M;若a?α,b?β,α∩β=c,a∩b=M,则M∈c;
(2)平面内有两个定点F1(0,3),F2(0-3)和一动点M,若||MF1|-|MF2||=2a(a>0)是定值,则点M的轨迹是双曲线;
(3)在复数范围内分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)

(4)抛物线y2=12x上有一点P到其焦点的距离为6,则其坐标为P(3,±6).
以上命题中所有正确的命题序号为
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

给出以下命题:
(1)α,β表示平面,a,b,c表示直线,点M;若a?α,b?β,α∩β=c,a∩b=M,则M∈c;
(2)平面内有两个定点F1(0,3),F2(0-3)和一动点M,若||MF1|-|MF2||=2a(a>0)是定值,则点M的轨迹是双曲线;
(3)在复数范围内分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)

(4)抛物线y2=12x上有一点P到其焦点的距离为6,则其坐标为P(3,±6).
以上命题中所有正确的命题序号为______.

查看答案和解析>>

2.A解析:由知函数在上有零点,又因为函数在(0,+)上是减函数,所以函数y=f(x) 在(0,+)上有且只有一个零点不妨设为,则,又因为函数是偶函数,所以=0并且函数在(0,+)上是减函数,因此-是(-,0)上的唯一零点,所以函数共有两个零点

下列叙述中,是随机变量的有(    )

①某工厂加工的零件,实际尺寸与规定尺寸之差;②标准状态下,水沸腾的温度;③某大桥一天经过的车辆数;④向平面上投掷一点,此点坐标.

A.②③         B.①②     C.①③④       D.①③

查看答案和解析>>


同步练习册答案