解:(1)这样的抛物线F是不存在的. 查看更多

 

题目列表(包括答案和解析)

如图,抛物线经过点A(-4,0)、B(-2,2),连接OB、AB。
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此抛物线上;
(4)在抛物线上是否存在这样的点M,使得四边形ABOM成直角梯形,若存在,请求出点M坐标及该直角梯形的面积,若不存在,请说明理由。

查看答案和解析>>

已知:如图,抛物线y=ax2-2ax+c(a≠0) 与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0)。
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ当△CQE的面积为3时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)。问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0)。 求该抛物线的解析式; 点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ。当△CQE的面积最大时,求点Q的坐标; 若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)。

问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标若不存在,请说明理由。

查看答案和解析>>

已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0)。 求该抛物线的解析式; 点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ。当△CQE的面积最大时,求点Q的坐标; 若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)。

问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标若不存在,请说明理由。

 

查看答案和解析>>

已知如图,抛物线y=ax2+bx-a的图像与x轴交于A、B两点,点A在点B的左边,顶点坐标为C(0,-4),直线x=m(m>1)与x轴交于点D。
(1)求抛物线的解析式;
(2)在直线x=m(m>1)上有一点P(点P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求P点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,试问:抛物线y=ax2+bx-a是否存在一点Q,使得四边形ABPQ为平行四边形?如果存在这样的点Q,请求出m的值;如果不存在,请简要说明理由。

查看答案和解析>>


同步练习册答案