⑶坐标平面内是否存在点.使得以点M和⑵中抛物线上的三点A.B.C为顶点的四边形是平行四边形?若存在.请求出点的坐标,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

平面直角坐标系内有两条直线l1、l2,直线l1的解析式为y=-
2
3
x+1,如果将坐标纸折叠,使直线l1与l2重合,此时点(-2,0)与点(0,2)也重合.
(1)求直线l2的解析式;
(2)设直线l1与l2相交于点M,问:是否存在这样的直线l:y=x+t,使得如果将坐标纸沿直线l折叠,点M恰好落在x轴上若存在,求出直线l的解析式;若不存在,请说明理由;
(3)设直线l2与x轴的交点为A,与y轴的交点为B,以点C(0,
2
3
)为圆心,CA的长为半径作圆,过点B任作一条直线(不与y轴重合),与⊙C相交于D、E两点(点D在点E的下方)
①在如图所示的直角坐标系中画出图形;
②设OD=x,△BOD的面积为S1,△BEC的面积为S2
S1
S2
=y
,求y与x之间的函数关系式精英家教网,并写出自变量x的取值范围.

查看答案和解析>>

平面直角坐标系内有两条直线l1、l2,直线l1的解析式为y=-
2
3
x+1,如果将坐标纸折叠,使直线l1与l2重合,此时点(-2,0)与点(0,2)也重合.
(1)求直线l2的解析式;
(2)设直线l1与l2相交于点M,问:是否存在这样的直线l:y=x+t,使得如果将坐标纸沿直线l折叠,点M恰好落在x轴上若存在,求出直线l的解析式;若不存在,请说明理由;
(3)设直线l2与x轴的交点为A,与y轴的交点为B,以点C(0,
2
3
)为圆心,CA的长为半径作圆,过点B任作一条直线(不与y轴重合),与⊙C相交于D、E两点(点D在点E的下方)
①在如图所示的直角坐标系中画出图形;
②设OD=x,△BOD的面积为S1,△BEC的面积为S2
S1
S2
=y
,求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

已知:在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,抛物线经过O、A两点。

 (1)试用含a的代数式表示b;

(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分。若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;

(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得?若存在,求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

已知:在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,抛物线经过O、A两点。

(1)试用含a的代数式表示b;

(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分。若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;

(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得?若存在,求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

已知:在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,抛物线经过O、A两点。

  (1)试用含a的代数式表示b;

  (2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分。若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;

  (3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得?若存在,求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案