(2008 湖北 荆门)已知抛物线y=ax2+bx+c的顶点A在x轴上.与y轴的交点为B(0.1).且b=-4ac. (1) 求抛物线的解析式,(2) 在抛物线上是否存在一点C.使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由,若存在.求出点C的坐标.并求出此时圆的圆心点P的坐标,小题的结论.你发现B.P.C三点的横坐标之间.纵坐标之间分别有何关系? 查看更多

 

题目列表(包括答案和解析)

(2008•雅安)已知抛物线y=ax2+bx+c与y轴交于点(0,3a),对称轴为x=1.
(1)试用含a的代数式表示b、c.
(2)当抛物线与直线y=x-1交于点(2,1)时,求此抛物线的解析式.
(3)求当b(c+6)取得最大值时的抛物线的顶点坐标.

查看答案和解析>>

(2008•无锡)已知抛物线y=ax2-2x+c与它的对称轴相交于点A(1,-4),与y轴交于C,与x轴正半轴交于B.
(1)求这条抛物线的函数关系式;
(2)设直线AC交x轴于D,P是线段AD上一动点(P点异于A,D),过P作PE∥x轴交直线AB于E,过E作EF⊥x轴于F,求当四边形OPEF的面积等于时点P的坐标.

查看答案和解析>>

(2008•双柏县)已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

(2008•湘潭)已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点.
(1)求抛物线的函数关系式;
(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;
(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

(2008•双柏县)已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案