解: 得c=1. 查看更多

 

题目列表(包括答案和解析)

抛物线y=ax2+bx+c经过点O(0,0),A(4,0),B(2,2).
(1)求该抛物线的解析式;
(2)画出此抛物线的草图;
(3)求证:△AOB是等腰直角三角形;
(4)将△AOB绕点O按顺时针方向旋转135°得△OA'B',写出边A'B'的中点P的坐标,试判定点P是否在此抛物线上,并说明理由.

查看答案和解析>>

抛物线y=ax2+bx+c经过点O(0,0),A(4,0),B(2,2).
(1)求该抛物线的解析式;
(2)画出此抛物线的草图;
(3)求证:△AOB是等腰直角三角形;
(4)将△AOB绕点O按顺时针方向旋转135°得△OA'B',写出边A'B'的中点P的坐标,试判定点P是否在此抛物线上,并说明理由.

查看答案和解析>>

抛物线y=ax2+bx+c经过点O(0,0),A(4,0),B(2,2).
(1)求该抛物线的解析式;
(2)画出此抛物线的草图;
(3)求证:△AOB是等腰直角三角形;
(4)将△AOB绕点O按顺时针方向旋转135°得△OA'B',写出边A'B'的中点P的坐标,试判定点P是否在此抛物线上,并说明理由.

查看答案和解析>>

把抛物线l1:y=-x2向右平移1个单位长度,再向上平移4个单位长度,得到抛物线l2.如图,精英家教网点A、B分别是抛物线l2与x轴的交点,点C是抛物线l2与y轴的交点.
(1)直接写出抛物线l2的解析式及其对称轴;
(2)在抛物线l2的对称轴上求一点P,使得△PAC的周长最小.请在图中画出点P的位置,并求点P的坐标;
(3)若点D是抛物线l2上的一动点,且点D在第一象限内,过点D作DE⊥x轴,垂足为E,DE与直线BC交于点F.设D点的横坐标为t.试探究:
①四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由;
②四边形CEBCD能否为梯形?若能,请求出符合条件的D点坐标;若不能,请说明理由.

查看答案和解析>>

精英家教网设抛物线y=ax2+bx+c与x轴交于两个不同的点A(-l,0)、B(4,0),与y轴交于点C(0,2).
(1)求抛物线的解析式:
(2)问抛物线上是否存在一点M,使得S△ABM=2S△ABC?若存在,求出点M的坐标;若不存在,请说明理由.
(3)已知点D(1,n)在抛物线上,过点A的直线y=-x-1交抛物线于另一点E.
①求tan∠ABD的值:
②若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.

查看答案和解析>>


同步练习册答案