如图1.设抛物线对称轴与轴交于点.. 查看更多

 

题目列表(包括答案和解析)

如图,把抛物线(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线,抛物线与抛物线关于轴对称.点分别是抛物线轴的交点,分别是抛物线的顶点,线段轴于点.

(1)分别写出抛物线的解析式;

(2)设是抛物线上与两点不重合的任意一点,点是点关于轴的对称点,试判断以为顶点的四边形是什么特殊的四边形?说明你的理由.

(3)在抛物线上是否存在点,使得,如果存在,求出点的坐标,如果不存在,请说明理由.

 


查看答案和解析>>

如图,把抛物线y=-x2(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线l1,抛物线l2与抛物线l1关于y轴对称.点A、O、B分别是抛物线l1、l2与x轴的交点,D、C分别是抛物线l1、l2的顶点,线段CD交y轴于点E.

(1)分别写出抛物线l1与l2的解析式;

(2)设P是抛物线l1上与D、O两点不重合的任意一点,Q点是P点关于y轴的对称点,试判断以P、Q、C、D为顶点的四边形是什么特殊的四边形?说明你的理由.

(3)在抛物线l1上是否存在点M,使得S△ABM=S△四边形AOED,如果存在,求出M点的坐标,如果不存在,请说明理由.

查看答案和解析>>

如图,一元二次方程x2+2x-3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交精英家教网点C,B的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为
 
,G点坐标为
 

(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.

查看答案和解析>>

如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x精英家教网轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

查看答案和解析>>

如图,抛物线与x轴相交于点A(-4,0),B(-2,0),直线AC过抛物线上的精英家教网点C(-1,3).
(1)求此抛物线和直线AC的解析式;
(2)设抛物线的顶点是D,直线AC与抛物线的对称轴相交于点E,点F是直线DE上的一个动点,求FB+FC的最小值;
(3)若点P在直线AC上,问在平面上是否存在点Q,使得以点A、B、P、Q为顶点的四边形是菱形?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案