(也可设) 查看更多

 

题目列表(包括答案和解析)

(2010•同安区质检)如图,在直角梯形ABCD中,∠A=90°,DC∥AB,CD=
12
AB=a,AD=3,E为线段BC上的动点(不与点B、点C重合),EF⊥AB于F,EG⊥AD于G,设EF=x,EG=y.
(1)求y关于x的函数关系式(系数可含a),并写出自变量x的取值范围;
(2)无论a为何正数,在点E运动的过程中,我们都可以看出y随着x的增大而减小.小明说此时四边形AFEG的周长w也是随着x的增大而减小.你认为他说的是否正确?如果正确,请说明理由;如果不正确,请举出反例.

查看答案和解析>>

(2011•裕华区一模)如图1,直角梯形ABCD中,∠A=∠B=90°,AD=AB=6cm,BC=8cm,点E从点A出发沿AD方向以1cm/s的速度向终点D运动;点F从点C出发沿CA方向以2cm/s的速度向终点A运动,当点E、点F中有一点运动到终点,另一点也随之停止.设运动时间为ts.

(1)当t为何值时,△AEF和△ACD相似?
(2)如图2,连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值及四边形ABFE的面积;若不能,请说明理由;
(3)当t为何值时,△AFE的面积最大?最大值是多少?

查看答案和解析>>

(2012•西城区模拟)探索一个问题:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”
(1)完成下列空格:
当已知矩形A的边长分别为6和1时,小明是这样研究的:设所求矩形的一边是x,则另一边为(
7
2
-x),由题意得方程:x(
7
2
-x)=3,化简得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=
2
2
,x2=
3
2
3
2

∴满足要求的矩形B存在.
小红的做法是:设所求矩形的两边分别是x和y,由题意得方程组:
x+y=
7
2
xy=3
消去y化简后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的边长分别为2和1,请你仿照小明或小红的方法研究是否存在满足要求的矩形B.
(3)在小红的做法中,我们可以把方程组整理为:
y=
7
2
-x
y=
3
x
,此时两个方程都可以看成是函数解析式,从而我们可以利用函数图象解决一些问题.如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:(完成下列空格)
①这个图象所研究的矩形A的面积为
8
8
;周长为
18
18

②满足条件的矩形B的两边长为
9+
17
4
9+
17
4
9-
17
4
9-
17
4

查看答案和解析>>

(2012•镇江二模)如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.
(1)如图1,矩形ABCD中,AB=3,BC=1,请在边AB上作出C,D两点的所有勾股点(要求:尺规作图,保留作图痕迹,不要求写作法).
(2)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点P从D点出发沿着DC方向以1cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上.
①当t=4、t=5时,直接写出点H的个数.
②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).

查看答案和解析>>

(2013•玄武区二模)有这样一道试题:“甲车从A地出发以60km/h的速度沿公路匀速行驶,0.5小时后,乙车也从A地出发,以80km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.请建立一次函数关系解决上述问题.”
小明是这样解答的:
解:设乙车出发后x小时追上甲车,甲乙两车间距离为ykm.根据题意可得
y=60×0.5-(80-60)x.
当乙车追上甲车时,即y=0,求得x=1.5.
答:乙车出发1.5小时后追上甲车.
(1)老师看了小明的解答,微笑着说:“万事开头难,你一开始就有错误哦.”请帮小明思考一下,他哪里错了?为什么?
(2)请给出正确的解答过程并画出相应的函数图象.

查看答案和解析>>


同步练习册答案