题目列表(包括答案和解析)
如图,
,点
在
的延长线上,若
,则
的度数为( )
A.
B.
C.
D.![]()
如图,
,点
在
的延长线上,若
,则
的度数为(
)
![]()
A
.如图,△
内接于⊙
,点
在
的延长线上,sinB=
,∠CAD=30°⑴求证:
是⊙
的切线;⑵若
,求
的长。
![]()
【解析】(1)连接OA,由于sinB=
,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;
(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.
如图,△
内接于⊙
,点
在
的延长线上,sinB=
,∠CAD=30°⑴求证:
是⊙
的切线;⑵若
,求
的长。
![]()
【解析】(1)连接OA,由于sinB=
,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;
(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.
如图,
是
的直径,点
在
的延长线上,过点
作
的切线,切点为
,若
,则
______.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com