解:(1)由题意.知点是抛物线的顶点. 查看更多

 

题目列表(包括答案和解析)

已知:如图,抛物线y=ax2+bx+c与x轴交于点A(数学公式,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比数学公式(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:数学公式数学公式,结果精确到0.001)

查看答案和解析>>

已知:如图,抛物线y=ax2+bx+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,结果精确到0.001)

查看答案和解析>>

(本题满分9分)

如图,以为顶点的抛物线与轴交于点.已知两点坐标分别为(3,0)、(0,4).

(1)求抛物线的解析式;

(2)设是抛物线上的一点(为正整数),且它位于对称轴的右侧.若以为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;

(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点是否总成立?请说明理由.

 

查看答案和解析>>

(本题满分9分)
如图,以为顶点的抛物线与轴交于点.已知两点坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设是抛物线上的一点(为正整数),且它位于对称轴的右侧.若以为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点是否总成立?请说明理由.

查看答案和解析>>

(本题满分9分)
如图,以为顶点的抛物线与轴交于点.已知两点坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设是抛物线上的一点(为正整数),且它位于对称轴的右侧.若以为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点是否总成立?请说明理由.

查看答案和解析>>


同步练习册答案