题目列表(包括答案和解析)
解:(1)OA=1,OC=2
则A点坐标为(0,1),C点坐标为(2,0)
设直线AC的解析式为y=kx+b
![]()
解得![]()
直线AC的解析式为
··················· 2分
(2)
或![]()
(正确一个得2分)························· 8分
(3)如图,设![]()
过
点作
于F
![]()
由折叠知![]()
![]()
或2··········· 10分
解:(1)由题意知,当
、
运动到
秒时,如图①,过
作
交
于
点,则四边形
是平行四边形.
∵
,
.
∴
.
∴
.
∴
.解得
. 5分
(2)分三种情况讨论:
① 当
时,如图②作
交
于
,则有
即.
∵
,
∴
,
∴
,
解得
. 6分
② 当
时,如图③,过
作
于H.
则
,
∴
.
∴
.7分
③ 当
时,如图④.
则
.
. -------------------------------------8分
综上所述,当
、
或
时,
为等腰三角形.
![]()
解:(1)如图①AH=AB
(2)数量关系成立.如图②,延长CB至E,使BE=DN
∵ABCD是正方形
∴AB=AD,∠D=∠ABE=90°
∴Rt△AEB≌Rt△AND
∴AE=AN,∠EAB=∠NAD
∴∠EAM=∠NAM=45°
∵AM=AM
∴△AEM≌△ANM
∵AB、AH是△AEM和△ANM对应边上的高,
∴AB=AH
(3)如图③分别沿AM、AN翻折△AMH和△ANH,
得到△ABM和△AND
∴BM=2,DN=3,∠B=∠D=∠BAD=90°
分别延长BM和DN交于点C,得正方形ABCE.
由(2)可知,AH=AB=BC=CD=AD.
设AH=x,则MC=
, NC=
图②
在Rt⊿MCN中,由勾股定理,得
∴![]()
解得
.(不符合题意,舍去)
∴AH=6.
解:(1)旋转后的图象解析式为![]()
. ……………………… 1分
(2)由旋转可得
(4,-1)、
(1,-4). ………………………… 3分
(3)依题意,可知
.若
为直角三角形,则
同时也是等腰三角形,因此,只需求使
为直角三角形的
值.
分两种情况讨论:
①当
是直角,
时,如图1,
∵AB′=8,B′A′==
,AM=B′N=MN=t,
∴B′M=8-t,
∵
,
∴
. ………… 4分
解得
(舍去负值),
∴
. ……………… 5分
②当
是直角,
时,
如图2,
∵AB′=8,B′A′==
,AM=B′N=t,
∴B′M=MN=8-t,
∵
,
∴
,
解得
.
∵
,
,
∴此时t值不存在. …………… 6分
(此类情况不计算,通过画图说明t值不存在也可以)
综上所述,当
时,
为等腰直角三角形. ……………… 7分
| 2 |
| 5 |
| 2 |
| 2 |
| 5 |
| 5 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com