由点B.C.M(1.4).得 查看更多

 

题目列表(包括答案和解析)

(1)如图1,抛物线C1:y=ax2+bx+c的开口向下,顶点为D点,与y轴交于点,且经过A(-1,0),B(3,0)两点,若△ABD的面积为8.
①求抛物线C1的解析式;
②Q是抛物线C1上的一个动点,当△QBC的内心落在x轴上时,求此时点Q的坐标;
(2)如图2,将(1)中的抛物线C1向右平移t(t>0)个单位长度,得到抛物线C2,顶点为E,抛物线C1、C2相交于P点,设△PDE的面积为S,判断
St3
是否为定值?请说明理由.
精英家教网

查看答案和解析>>

(1)如图1,已知△ABC中,∠BAC=45°,AB=AC,AD⊥BC于D,将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)如果(1)中AB≠AC,其他不变,如图2.那么四边形AEGF是否是正方形?请说明理由;
(3)在(2)中,若BD=2,DC=3,求AD的长.
精英家教网

查看答案和解析>>

24、(1)如图,在图1中,互不重叠的三角形共有3个,在图2中,互不重叠的三角形共有5个,在图3中,互不重叠的三角形共有7个,…,则在第n个图形中,互不重叠的三角形共有
2n+1
个.(用含n的代数式表示)

(2)若在如图4所示的n边形中,P是A1An边上的点,分别连接PA2、PA3、PA4…PAn-1,得到n-1个互不重叠的三角形.

你能否根据这样的划分方法写出n边形的内角和公式并说明你的理由;
(3)反之,若在四边形内部有n个不同的点,按照(1)中的方法可得k个互不重叠的三角形,试探究n与k的关系.

查看答案和解析>>

29、(1)操作并观察:如图a,两个半径为r的等圆⊙O1与⊙O2外切于点P.将三角板的直角顶点放在点P,再将三角板绕点P旋转,使三角板的两直角边中的一边PA与⊙O1相交于A,另一边PB与⊙O2相交于点B(转动中直角边与两圆都不相切).在转动过程中;线段AB的长与半径r之间有什么关系?请回答并证明你得到的结论;
(2)如图b,设⊙O1与⊙O2外切于点P,半径分别为r1、r2(r1>r2),重复(1)中的操作过程,观察线段AB的长度与r1、r2之间有怎样的关系,并说明理由.

查看答案和解析>>

(1)把二次函数y=-
3
4
x2+
3
2
x+
9
4
代成y=a(x-h)2+k的形式;
(2)写出抛物线y=-
3
4
x2+
3
2
x+
9
4
的顶点坐标和对称轴,并说明该抛物线是由哪一条形如y=ax2的抛物线经过怎样的变换得到的;
(3)如果抛物线y=-
3
4
x2+
3
2
x+
9
4
中,x的取值范围是0≤x≤3,请画出图象,并试着给该抛物线编一个具有实际意义的情境.(如喷水、掷物、投篮等)

查看答案和解析>>


同步练习册答案