另解: 由抛物线过B(0,1) 得c=1.又b2-4ac=0, b=-4ac.∴b=-1. 查看更多

 

题目列表(包括答案和解析)

抛物线y=x2+4x+3是由抛物线y=x2平移而得,则下列平移正确的是
[     ]

A.先向左平移2个单位,再向上平移1处单位;
B.先向右平移2个单位,再向下平移1处单位;
C.先向左平移2个单位,再向下平移1处单位;
D.先向右平移2个单位,再向上平移1处单位

查看答案和解析>>

解:(1)由抛物线C1得顶点P的坐标为(2,5)………….1分

∵点A(-1,0)在抛物线C1上∴.………………2分

(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G..

∵点P、M关于点A成中心对称,

∴PM过点A,且PA=MA..

∴△PAH≌△MAG..

∴MG=PH=5,AG=AH=3.

∴顶点M的坐标为(,5).………………………3分

∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到

∴抛物线C3的表达式.  …………4分

(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到

∴顶点N、P关于点Q成中心对称.

 由(2)得点N的纵坐标为5.

设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R.

∵旋转中心Q在x轴上,

∴EF=AB=2AH=6.

 ∴EG=3,点E坐标为(,0),H坐标为(2,0),R坐标为(m,-5).

根据勾股定理,得

     

  

       

①当∠PNE=90º时,PN2+ NE2=PE2

解得m=,∴N点坐标为(,5)

②当∠PEN=90º时,PE2+ NE2=PN2

解得m=,∴N点坐标为(,5).

③∵PN>NR=10>NE,∴∠NPE≠90º  ………7分

综上所得,当N点坐标为(,5)或(,5)时,以点P、N、E为顶点的三角形是直角三角形.…………………………………………………………………………………8分

查看答案和解析>>

解:(1)点C的坐标为.

∵ 点A、B的坐标分别为

            ∴ 可设过ABC三点的抛物线的解析式为.   

            将代入抛物线的解析式,得.

            ∴ 过ABC三点的抛物线的解析式为.

(2)可得抛物线的对称轴为,顶点D的坐标为   

,设抛物线的对称轴与x轴的交点为G.

直线BC的解析式为.

设点P的坐标为.

解法一:如图8,作OPAD交直线BC于点P

连结AP,作PMx轴于点M.

OPAD

∴ ∠POM=∠GAD,tan∠POM=tan∠GAD.

  ∴ ,即.

  解得.  经检验是原方程的解.

  此时点P的坐标为.

但此时OMGA.

  ∵

      ∴ OPAD,即四边形的对边OPAD平行但不相等,

      ∴ 直线BC上不存在符合条件的点P. - - - - - - - - - - - - - - - - - - - - - 6分

            解法二:如图9,取OA的中点E,作点D关于点E的对称点P,作PNx轴于

N. 则∠PEO=∠DEAPE=DE.

可得△PEN≌△DEG

,可得E点的坐标为.

NE=EG= ON=OE-NE=NP=DG=.

∴ 点P的坐标为.∵ x=时,

∴ 点P不在直线BC上.

                   ∴ 直线BC上不存在符合条件的点P .

 


(3)的取值范围是.

查看答案和解析>>

(2012•新疆)如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).

(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是
正方形
正方形
,请说明理由;
(2)如图2,已知D(-
12
,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;
(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A-B-C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?

查看答案和解析>>

如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从点B出发沿BA向点A运动,运动到点A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P的运动时间t为何值时,四边形POQE是等腰梯形?

查看答案和解析>>


同步练习册答案