(1)解法一:. 查看更多

 

题目列表(包括答案和解析)

一批10米长的钢筋需要截成3米和4米得两种短材备用,截法有以下三种:
第一种截法 第二种截法 第三种截法
3米 3根 2根 0根
4米 0根 1根 2根
余料 1米 0米 2米
现在需要3米和4米的两种短材各60根,设用第二种截法需要10米长的钢筋x根,第一种截法需要10米长的钢筋y根,第三种截法需要10米长的钢筋z根,截完后总余料为w米,解答下列问题:
(1)分别用含x的代数式表示y、z;
(2)写出w关于x的函数关系式,并求出x的取值范围;
(3)求出总余料w最少的截法方案.

查看答案和解析>>

25、一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法.请依据分类的思想和分类讨论的方法解决下列问题:
如图,在△ABC中,∠ACB>∠ABC.
(1)若∠BAC是锐角,请探索在直线AB上有多少个点D,能保证△ACD∽△ABC(不包括全等)?
(2)请对∠BAC进行恰当的分类,直接写出每一类在直线AB上能保证△ACD∽△ABC(不包括全等)的点D的个数?

查看答案和解析>>

解决问题:(1)甲、乙同时各掷一枚骰子一次.
(2)求出两个朝上数字的积.
(3)若得到的积为偶数则甲得1分,否则乙得1分.
(4)这个游戏对甲、乙双方公平吗?为什么?
(5)若不公平,你们能修改规则,使之公平吗?你们能想出多少种方法.

查看答案和解析>>

解方程组
3p+2q=3
7p+4q=8
可以由②-①×2消去q,化为一元一次方程来解,还可以有其它多种方法,如:由②得6p+4q+p=8,即2(3p+2q)+p=8,把①式代入得:2×
 
+p=8,也达到了
 
的目的,从而求出方程组的解.

查看答案和解析>>

一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
摸球总次数 10 20 30 60 90 120 180 240 330 450
“和为8”出现的频数 2 10 13 24 30 37 58 82 110 150
“和为8”出现的频率 0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是
 

(2)如果摸出的这两个小球上数字之和为9的概率是
1
3
,那么x的值可以取7吗?请用列表法或画树状图法说明理由;如果x的值不可以取7,请写出一个符合要求的x值.

查看答案和解析>>


同步练习册答案