如图13.已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C.直线y=-2x-1经过抛物线上一点B.且与y轴.直线x=2分别交于点D.E.(1)求m的值及该抛物线对应的函数关系式,(2)求证:① CB=CE ,② D是BE的中点,是该抛物线上的一个动点.是否存在这样的点P,使得PB=PE,若存在.试求出所有符合条件的点P的坐标,若不存在.请说明理由 查看更多

 

题目列表(包括答案和解析)

如图1,已知抛物线经过原点O和x轴上另一点D,顶点的坐标为(2,4),Rt△ABC的顶点A与点O重合,AC、AB分别在x轴、y轴上,且AC =3,AB =4。
(1)直线BC的解析式为                
(2)求该抛物线的解析式。
(3)如图2,将Rt△ABC以每秒1个单位长度的速度沿x轴的正方向平行移动,同时一动点P也以相同的速度从点A出发向点B移动,设它们运动的时间为t秒(0≤t≤2),AB边与该抛物线的交点为Q。  
①连接CP、CQ,设△CPQ的面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由。 
②直接写出当直线BC与抛物线有唯一的公共点时t的值。  
 

查看答案和解析>>

(11分)如图1,已知抛物线经过原点0和x轴上另一个点E,顶点M的坐标是(2,4); 矩形ABCD的顶点A与点0重合,AD、AB分别在x轴和y轴上,且AD="2" ,AB=3.
(1)求该抛物线所参应的函数表达式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2).
①当t=时,判断点P时否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的图形面积为S,试部S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

(11分)如图1,已知抛物线经过原点0和x轴上另一个点E,顶点M的坐标是(2,4); 矩形ABCD的顶点A与点0重合,AD、AB分别在x轴和y轴上,且AD=2 ,AB=3.

(1)求该抛物线所参应的函数表达式;

(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2).

①当t=时,判断点P时否在直线ME上,并说明理由;

 

②设以P、N、C、D为顶点的图形面积为S,试部S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

 

查看答案和解析>>

如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且

(1)求抛物线C的解析式;

(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。

①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;

②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值。

 

查看答案和解析>>

(11分)如图1,已知抛物线经过原点0和x轴上另一个点E,顶点M的坐标是(2,4); 矩形ABCD的顶点A与点0重合,AD、AB分别在x轴和y轴上,且AD=2 ,AB=3.

(1)求该抛物线所参应的函数表达式;

(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2).

①当t=时,判断点P时否在直线ME上,并说明理由;

 

②设以P、N、C、D为顶点的图形面积为S,试部S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案