∴ 所求的抛物线对应的函数关系式为.即. (2)①直线y=-2x-1与y轴.直线x=2的交点坐标分别为D. 过点B作BG∥x轴.与y轴交于F.直线x=2交于G. 查看更多

 

题目列表(包括答案和解析)

如图,直线AD对应的函数关系式为y=-x-1,与抛物线交于点A(在x轴上)、点D,抛物线与x轴另一交点为B(3,0),抛物线与y轴交点C(0,-3),
(1)求抛物线的解析式;
(2)P是线段AD上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)若点F是抛物线的顶点,点G是直线AD与抛物线对称轴的交点,在线段AD上是否存在一点P,使得四边形GFEP为平行四边形;
(4)点H抛物线上的动点,在x轴上是否存在点Q,使A、D、H、Q这四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的Q点坐标;如果不存在,请说明理由.

查看答案和解析>>

已知抛物线y=x2+bx+c(其中b>0,c≠0)与y轴的交点为A,点A关于抛物线对称轴的对称点为B(m,n),且AB=2.
(1)求m、b的值;
(2)如果抛物线的顶点位于x轴的下方,且BO=
20
.求抛物线所对应的函数关系式.(友情提示:请画图思考)

查看答案和解析>>

已知抛物线y=x2+(2n-1)x+n2-1(n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标.如果不存在,请说明理由.

查看答案和解析>>

已知抛物线y=-x2+2kx-
32
k2+2k-2
(k是实数)与x轴有交点,将此抛物线向左平移1个单位,再向上平移4个单位,得到新的抛物线E,设抛物线E与x轴的交点为B,C,如图.
(1)求抛物线E所对应的函数关系式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过点C,得到直线l,点P是l上一动点(与点C不重合).设以点A,B,C,P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤16时,求t的取值范围;
(3)点Q是直线l上的另一个动点,以点Q为圆心,R为半径作圆Q,当R取何值时,圆Q与直线AB相切?相交?相离?直接给出结果.

查看答案和解析>>

如图抛物线y=ax2-5x+4a与x轴相交于点A、B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标.
(2)该抛物线与y轴的交点为D,则四边形ABCD为
等腰梯形
等腰梯形

(3)将此抛物线沿x轴向左平移3个单位,再向上平移2个单位,请写出平移后图象所对应的函数关系式.

查看答案和解析>>


同步练习册答案