∴ CB=CE=5. --------②过点E作EH∥x轴.交y轴于H.则点H的坐标为H.又点F.D的坐标为F.∴ FD=DH=4.BF=EH=2.∠BFD=∠EHD=90°. ∴ △DFB≌△DHE (SAS).∴ BD=DE.即D是BE的中点. ------------ 查看更多

 

题目列表(包括答案和解析)

如图,△ABC内接于⊙O,AB的延长线与过C点的切线GC相交于点D,BE与AC相交于点F精英家教网,且CB=CE.
求证:(1)BE∥DG;
(2)CB2-CF2=BF•FE.

查看答案和解析>>

19、如图,①AB=DE、②CB=CE、③∠1=∠2、④CA=CD.请从中选出三个作为条件,一个作为结论,写出所有成立的命题,并选择其中一个加以证明.

查看答案和解析>>

已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F
(1)如图1,若∠ACD=60゜,则∠AFB=
120°
120°

(2)如图2,若∠ACD=α,则∠AFB=
180°-α
180°-α
(用含α的式子表示);
(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.

查看答案和解析>>

如图,已知抛物线经过点B(-2,3),原点O和x轴上另一点A,它的对称轴与x轴交于点C精英家教网(2,0).
(1)求此抛物线的函数关系式;
(2)连接CB,在抛物线的对称轴上找一点E,使得CB=CE,求点E的坐标;
(3)在(2)的条件下,连接BE,设BE的中点为G,在抛物线的对称轴上是否存在点P,使得△PBG的周长最小?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

(2012•武汉模拟)如图,AB为⊙O的直径,AM和BN是它的两条切线,E为⊙O的半圆弧上一动点(不与A、B重合),过点E的直线分别交射线AM、BN于D、C两点,且CB=CE.
(1)求证:CD为⊙O的切线;
(2)若tan∠BAC=
2
2
,求 
AH
CH
的值.

查看答案和解析>>


同步练习册答案