题目列表(包括答案和解析)
【答案】
π.
【考点】扇形面积的计算;三角形内角和定理.
【分析】根据三角形内角和定理得到∠B+∠C=180°-∠A=130°,利用半径相等得到OB=OD,OC=OE,则∠B=∠ODB,∠C=∠OEC,再根据三角形内角和定理得到∠BOD=180°-2∠B,∠COE=180°-2∠C,则∠BOD+∠COE=360°-2(∠B+∠C)=360°-2×130°=100°,图中阴影部分由两个扇形组成,它们的圆心角的和为100°,半径为3,然后根据扇形的面积公式计算即可.
【解答】∵∠A=50°,
∴∠B+∠C=180°-∠A=130°,
而OB=OD,OC=OE,
∴∠B=∠ODB,∠C=∠OEC,
∴∠BOD=180°-2∠B,∠COE=180°-2∠C,
∴∠BOD+∠COE=360°-2(∠B+∠C)
=360°-2×130°=100°,
而OB=
BC=3,
∴S阴影部分=
=
π.
故答案为
π.
【点评】本题考查了扇形面积的计算:扇形的面积=
(n为圆心角的度数,R为半径).也考查了三角形内角和定理.
【答案】0<m<2.
【考点】二次函数的图象;反比例函数的图象.
【专题】图表型.
【分析】首先作出分段函数y=
的图象,根据函数的图象即可确定m的取值范围.
【解答】分段函数y=
的图象如右图所示:
故要使直线y=m(m为常数)与函数y=
的图象恒有三个不同的交点,常数m的取值范围为0<m<2,
故答案为:0<m<2.
【点评】本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.
(本题满分12分)
【小题1】(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,
AB
=BC.∴∠NMC=180°—∠AMN—∠
AMB=180°—∠B—∠AMB=∠MAB
=∠MAE.
(下面请你完成余下的证明过程)![]()
【小题2】(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=
MN是否还成立?请说明理由.![]()
【小题3】(3)若将(1)中的“正方形ABCD”改为“正
边形ABCD…X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
| 2 |
| 3 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com