1.C 提示:原不等式转化为.解此不等式组可得x的范围. 查看更多

 

题目列表(包括答案和解析)

已知问题:上海迪斯尼工程某 施工工地上有一堵墙,工程队欲将长为4a(a>0)的建筑护栏(厚度不计)借助这堵墙围成矩形的施工区域(如图1),求所得区域的最大面积.解决这一问题的一种方法是:作出护栏关于墙面的轴对称图形(如图2),则原问题转化为“已知矩形周长为8a,求面积的最大值”从而轻松获解.参考这种借助对称图形解决问题的方法,对于下列情形:已知两堵墙互相垂直围成“L”形,工程队将长为4a(a>0)的建筑护栏借助墙角围成四边形的施工区域(如图3),可求得所围区域的最大面积为
2(
2
+1)a2
2(
2
+1)a2

查看答案和解析>>

“实系数一元二次方程ax2+bx+c=0有实数解”转化为“△=b2-4ac≥0”,你是否注意到必须a≠0;当a=0时,“方程有解”不能转化为△=b2-4ac≥0.若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?

查看答案和解析>>

把“五进制”数1234(5)转化为“八进制”数为(  )

查看答案和解析>>

若一函数模型为y=ax2+bx+c(a≠0),为将y转化为t的线性回归方程,则需做变换t=(  )
A、x2
B、(x+a)2
C、(x+
b
2a
)2
D、以上都不对

查看答案和解析>>

阅读下面所给材料:已知数列{an},a1=2,an=3an-1+2,求数列的通项an
解:令an=an-1=x,则有x=3x+2,所以x=-1,故原递推式an=3an-1+2可转化为:
an+1=3(an-1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an-1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn
(3)若数列{bn}满足:b1=10,bn+1=100bn3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn

查看答案和解析>>


同步练习册答案