26. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,在平面直角坐标系中,直线轴交于点,与轴交于点,抛物线过点、点,且与轴的另一交点为,其中>0,又点是抛物线的对称轴上一动点.

(1)求点的坐标,并在图1中的上找一点,使到点与点的距离之和最小;

(2)若△周长的最小值为,求抛物线的解析式及顶点的坐标;

(3)如图2,在线段上有一动点以每秒2个单位的速度从点向点移动(不与端点重合),过点轴于点,设移动的时间为秒,试把△的面积表示成时间的函数,当为何值时,有最大值,并求出最大值.

 

查看答案和解析>>

(本小题满分12分)

如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN ∥OB交CD于N.

1.⑴求证:MN是⊙O的切线;

2.⑵当0B=6cm,OC=8cm时,求⊙O的半径及图中阴影部分的面积.

 

查看答案和解析>>

(本小题满分12分)

甲、乙、丙三个人准备打羽毛球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.

1.(1)请你画出表示“抛硬币”一个回合所有可能出现的结果的树状图;

2.(2)求一个回合能确定两人先上场的概率.

 

查看答案和解析>>

(本小题满分12分)

如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).

1.⑴ 画出关于点O成中心对称的,并写出点B1的坐标;

2.⑵ 求出以点B1为顶点,并经过点B的二次函数关系式.

 

查看答案和解析>>

 (本小题满分12分)

如图,RtΔABC中,∠ACB=90°,AC=4,BA=5,点PAC上的动点(P不与A、C重合)PQAB,垂足为Q.设PC=xPQ= y

1.⑴求yx的函数关系式;

2.⑵试确定此RtΔABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?

3.⑶若0<x<1,试判断以P为圆心,半径为y的圆与⊙I能否相内切,若能求出相应的x的值,若不能,请说明理由.

 

查看答案和解析>>

一、选择题(每小题2分,共20分)

题号

1

2

3

4

5

6

7

8

9

10

答案

B

C

A

B

D

D

A

D

C

C

 

 

 

二、填空题(每小题3分,共24分)

11. 3 ;      12.12;    13.-3;  

14.132; 15. ; 16.(0,2.5)    17.135°     18.

三、解答题(本大题共8个小题;共76分)

19.解:原方程可化为,……………………(4分)

     x=2………………………………………(5分)

经检验,x=2是原方程的根.………………………………………(7分)

20.解:⑴设蓝球个数为个                -------1分

则由题意得         -------2分

            

答:蓝球有1个                   --------3分

 

 

                                                             --------4分

 

 

                                                             ---------5分

          ∴  两次摸到都是白球的概率 =  =    ----------7分

 

21. 解:过,垂足是

坐标是.???????????????????????????????????????????????? 2分

,垂足是

坐标是.??????????????????????????????????????????????? 4分

,垂足是(如图),

.????????????????????? 6分

易知

.???????????????????????????? 8分

坐标是.??????????????????????????????????????????????????????????????????????????????????????????????????? 9分

符合要求的点有三个,其连线段分别是(如图).????????????????????????????? 10分

22.解:(1)在中,

.????????????????????????????????????????????????????????????????????? 1分

中,

?????????????????????????????????????????????????????????????????????????????????????????????? 2分

都是等腰三角形.4分

(2)设,则,即.??????????????????????????????????????? 4分

解得(负根舍去).?????????????????????????????????????????????????????? 6分

(3)

 

 

 

 

 

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 8分

23.解:(1)由.???????????????????????????????????????????????????????? 2分

函数图象的顶点坐标为,对称轴为直线.?????????????????????????????????????? 4分

(2)如下右图.??????????????????????????????????????????????????????????????????????????????????????????????????????????? 7分

(3)从函数图象可以看出,从4月份开始新产品的销售累积利润盈利.??????????????????????? 8分

(4)时,

时,

这个公司第6个月所获的利润是万元.                       10分

 

 

 

 

 

24.25.(1)判断:EN与MF相等 (或EN=MF),点F在直线NE上,   ????? 3分

(说明:答对一个给2分)

(2)成立.??????????????????????????????? 4分

证明:

法一:连结DE,DF.   ?????????????????????????? 5分

∵△ABC是等边三角形, ∴AB=AC=BC.

又∵D,E,F是三边的中点,

∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.

又∠MDF+∠FDN=60°, ∠NDE+∠FDN=60°,

∴∠MDF=∠NDE. ??????????????????????????? 7分

在△DMF和△DNE中,DF=DE,DM=DN, ∠MDF=∠NDE,

∴△DMF≌△DNE. ?????????????????????????? 8分

∴MF=NE.        ?????????????????????????? 9分

 

 

 

 

 

 

 

法二:

延长EN,则EN过点F.    ??????????????????????? 5分

∵△ABC是等边三角形, ∴AB=AC=BC.

又∵D,E,F是三边的中点, ∴EF=DF=BF.  

   ∵∠BDM+∠MDF=60°, ∠FDN+∠MDF=60°,

∴∠BDM=∠FDN.???????????????????????????? 7分

又∵DM=DN, ∠ABM=∠DFN=60°,

∴△DBM≌△DFN.??????????????????????????? 8分

∴BM=FN.

∵BF=EF,  ∴MF=EN.????????????????????????? 9分

(3)画出图形(连出线段NE),

 

 

 

 

 

 

 

 

25.解:(1)由图1可得,

时,设市场的日销售量

在图象上,

.即.??????????????????????????????????????????????????????????????????????????????????????????? 2分

时,设市场的日销售量

因为点在图象上,

所以

解得

.????????????????????????????????????????????????????????????????????????????????????????????????? 4分

综上可知,当时,市场的日销售量

时,市场的日销售量.???????????????????????????????????????????? 6分

(2)方法一:由图1知,当(天)时,市场的日销售量达到最大60万件;又由图2知,当(天)时产品的日销售利润达到最大60万元/件,所以当(天)时,市场的日销售利润最大,最大值为3600万元.   9分

方法二:由图2得,

时,每件产品的日销售利润为

时,每件产品的日销售利润为

①当时,产品的日销售利润

时,产品的日销售利润最大等于2400万元.

②当时,产品的日销售利润

时,产品的日销售利润最大等于万元;

③当时,产品的日销售利润

时,产品的日销售利润最大等于3600万元.

综合①,②,③可知,当天时,这家公司市场的日销售利润最大为3600万元.

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 12分

26. (1)∵

        设正方形的边长为

        ∴(舍去).………2分

(2)①.………………………………………………4分

    ②.…………………6分

(3)①当0≤<4时,重叠部分为三角形,如图①.

       可得△∽△

      ∴=

      ∴.……………………8分

   ②当4≤<6时,重叠部分为直角梯形,如图②.

     .   ………9分

   ③当6≤<8时,重叠部分为五边形,如图③.

    可得,

     =.…………………………10分

 ④当8≤<10时,重叠部分为五边形,如图④.

  =.…………………………11分

⑤当10≤≤14时,重叠部分为矩形,如图⑤.

.……………12分

 

(用其它方法求解正确,相应给分)