探究:(2)如图②.若点在的延长线上时.之间的数量关系又是怎样?请直接写出结论, 查看更多

 

题目列表(包括答案和解析)

精英家教网如图①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,点G与点D重合,点E与点A重合,点F在AB上,让△EFG的边EF在AB上,点G在DC上,以每秒1个单位的速度沿着AB方向向右运动,如图②,点F与点B重合时停止运动,设运动时间为t秒.
(1)在上述运动过程中,请分别写出当四边形FBCG为正方形和四边形AEGD为平行四边形时对应时刻t的值或范围;
(2)以点A为原点,以AB所在直线为x轴,过点A垂直于AB的直线为y轴,建立如图③所示的坐标系.求过A,D,C三点的抛物线的解析式;
(3)探究:延长EG交(2)中的抛物线于点Q,是否存在这样的时刻t使得△ABQ的面积与梯形ABCD的面积相等?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

如图①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,点G与点D重合,点E与点A重合,点F在AB上,让△EFG的边EF在AB上,点G在DC上,以每秒1个单位的速度沿着AB方向向右运动,如图②,点F与点B重合时停止运动,设运动时间为t秒.
(1)在上述运动过程中,请分别写出当四边形FBCG为正方形和四边形AEGD为平行四边形时对应时刻t的值或范围;
(2)以点A为原点,以AB所在直线为x轴,过点A垂直于AB的直线为y轴,建立如图③所示的坐标系.求过A,D,C三点的抛物线的解析式;
(3)探究:延长EG交(2)中的抛物线于点Q,是否存在这样的时刻t使得△ABQ的面积与梯形ABCD的面积相等?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

如图,在梯形中,.另有一直角三角形,点与点重合,点与点重合,点上,让的边上,点上,以每秒1个单位的速度沿着方向向右运动,如图,点与点重合时停止运动,设运动时间为秒.

(1)在上述运动过程中,请分别写出当四边形为正方形和四边形为平行四边形时对应时刻的值或范围;

(2)以点为原点,以所在直线为轴,过点垂直于的直线为轴,建立如图所示的坐标系.求过三点的抛物线的解析式;

(3)探究:延长交(2)中的抛物线于点,是否存在这样的时刻使得的面积与梯形的面积相等?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

如图,在梯形中,.另有一直角三角形,点与点重合,点与点重合,点上,让的边上,点上,以每秒1个单位的速度沿着方向向右运动,如图,点与点重合时停止运动,设运动时间为秒.

(1)在上述运动过程中,请分别写出当四边形为正方形和四边形为平行四边形时对应时刻的值或范围;

(2)以点为原点,以所在直线为轴,过点垂直于的直线为轴,建立如图所示的坐标系.求过三点的抛物线的解析式;

(3)探究:延长交(2)中的抛物线于点,是否存在这样的时刻使得的面积与梯形的面积相等?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

如图,在梯形中,.另有一直角三角形,点与点重合,点与点重合,点上,让的边上,点上,以每秒1个单位的速度沿着方向向右运动,如图,点与点重合时停止运动,设运动时间为秒.

(1)在上述运动过程中,请分别写出当四边形为正方形和四边形为平行四边形时对应时刻的值或范围;

(2)以点为原点,以所在直线为轴,过点垂直于的直线为轴,建立如图所示的坐标系.求过三点的抛物线的解析式;

(3)探究:延长交(2)中的抛物线于点,是否存在这样的时刻使得的面积与梯形的面积相等?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

一、选择题1.B  2.B  3. C  4.D  5.D  6. D  7.C  8.B  9.D  10.A

二、填空题11., 12. ,  13.  2个,   14.  小李,   15. 12π

16. 3 17. 18.

三、19. 解:解不等式①,得                         x>………………………2分

   解不等式②,得                            x≤3…………………………4分

所以原不等式组的解集是                  …………………………6分

………………………………7分

 

20.  (1)AE=8米,图略;………………………………………………………… 3分

         (2)会影响采光,说理充分。………………………………………… 7分

   

21.解:(1)该游戏规则不公平……………………………………………………1分

                     每次游戏可能出现的所有结果列表如下:

哥哥的数字

小明的

数字

2

5

6

8

3

(2,3)

(5,3)

(6,3)

(8,3)

4

(2,4)

(5,4)

(6,4)

(8,4)

7

(2,7)

(5,7)

(6,7)

(8,7)

9

(2,9)

(5,9)

(6,9)

(8,9)

根据表格,数字之和的情况共有16种,其中和为偶数的有6种:

(5,3)、(2,4)、(6,4)、(8,4)、(5,7)、(5,9)

    ∴小明获胜的概率………………………………………………………5分

∴哥哥获胜的概率为

∴该游戏规则不公平…………………………………………………………………8分

(2)将小明的奇数数字扑克牌与哥哥偶数数字扑克牌对换一张 ……………10分

22.解:(1)根据轴反射的性质可知,在△AFE与△FB中,

    ∵∠A=∠,AE=B,∠AFE=∠FB,

∴△AFE≌△FB………………………………………………2分

∴AF=F  ……………………………………………………4分

(2)根据平移的性质可知为平移的距离. 在Rt△中,

   所以………………………………………6分

(3)根据旋转的性质可知,△为等边三角形,∠为旋转角.

      ∴旋转角∠为30°. ……………………………………8分

23.解:21.(1)…………………………………………2分

 

       (2)…………………………………………6分

(3)设收益为,则

时,,……………8分

   即月上市出售这种蔬菜每千克收益最大,最大受益为元.……………………10分

24.(1)如图①结论:.????????????????????????????????????????????????????????????????????? 2分

证明:过,则

四边形为正方形,

四边形为正方形,

四边形为矩形..?????????????????????????????????? 3分

中,

?????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

.????????????????????????????????? 5分

.???????????????????????????????????????????????????????????????????????????????????????????????????? 6分

(2)如图②,若点的延长线上时,结论.???????????????????????????? 8分

(3)如图,若点在线段上时,结论:??????????????????????????????????? 9分

若点在射线上时,结论:.???????????????????????????????????????????????? 10分

 

 

 

 

 

 

 

 

 

 

 

 

 

25.解:(1)设挂式空调和电风扇每台的采购价格分别为元和

 依题意,得???????????????????????????????????????????????????????????????????????? 5分

 解得

 即挂式空调和电风扇每台的采购价分别为元和元.?????????????????????????????? 6分

(2)设该业主计划购进空调台,则购进电风扇

解得:

为整数  为9,10,11????????????????????????????????????????????????????????????????????????? 7分

故有三种进货方案,分别是:方案一:购进空调9台,电风扇61台;

             方案二:购进空调10台,电风扇60台;

             方案三:购进空调11台,电风扇59台.??????????????? 8分

设这两种电器销售完后,所获得的利润为,则

                      

由于的增大而增大.

故当时,有最大值,

即选择第3种进货方案获利最大,最大利润为3970             …………………12分

26.解:(1)由题意可知,

点坐标为.???????????????????????????????????????????????????????????????????????????????????????? 2分

(2)设的面积为,在中,边上的高为,其中,.   3分

.????????????????????????????????????????????? 5分

的最大值为,此时.???????????????????????????????????????????????????????????????????????????????? 7分

(3)延长,则有

①若

.……………………………………9分

②若,则

.???????????????????????????????????????????????????????????????????????????????????????????????? 10分

③若,则

中,

.????????????????????????????????????????????????????????????? 11分

综上所述,,或,或. ………………………………………12分

 

 

 


同步练习册答案