12.曲线经过点(1.)的切线方程是 查看更多

 

题目列表(包括答案和解析)

经过点P(2,1)且与曲线f(x)=x3-2x2+1相切的直线l的方程是
 

查看答案和解析>>

经过点P(2,1)且与曲线f(x)=x3-2x2+1相切的直线l的方程是______.

查看答案和解析>>

精英家教网(1)已知平面上两定点A(-2,0).B(2,0),且动点M标满足
MA
MB
=0,求动点M的轨迹方程;
(2)若把(1)的M的轨迹图象向右平移一个单位,再向下平移一个单位,恰与直线x+ky-3=0 相切,试求实数k的值;
(3)如图,l是经过椭圆
y2
25
+
x2
16
=1
长轴顶点A且与长轴垂直的直线,E.F是两个焦点,点P∈l,P不与A重合.若∠EPF=α,求α的取值范围.
并将此题类比到双曲线:
y2
25
-
x2
16
=1
,l是经过焦点F且与实轴垂直的直线,A、B是两个顶点,点P∈l,P不与F重合,请作出其图象.若∠APB=α,写出角α的取值范围.(不需要解题过程)

查看答案和解析>>

已知双曲线经过点,且双曲线的渐近线与圆相切.

(1)求双曲线的方程;

(2)设是双曲线的右焦点,是双曲线的右支上的任意一点,试判断以为直径的圆与以双曲线实轴为直径的圆的位置关系,并说明理由.

 

查看答案和解析>>

已知双曲线经过点,且双曲线的渐近线与圆相切.
(1)求双曲线的方程;
(2)设是双曲线的右焦点,是双曲线的右支上的任意一点,试判断以为直径的圆与以双曲线实轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

一、选择题(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

B

B

A

D

C

D

B

C

A

D

二、填空题(每小题4分,共16分)

13、120; 14、20; 15、;16、2.

三、解答题

17、解:(Ⅰ)由正弦定理得

  ……2分

,因为,所以,得   ……3分,因为

所以,又为三角形的内角,所以      ……2分

(Ⅱ),由 ……2分

,所以当时,取最大值  ……3分

 

18、解:(Ⅰ)设公差为,由,得

       ,因为数列{}的各项均为正数,

     所以得  ……3分  又,所以 ……2分

      由  ……1分

(Ⅱ)由(Ⅰ)得……2分

  于是

         ……4分

19、(Ⅰ)如图,连结,因为

分别是棱的中点,

所以……2分

因为平面不在平面

内,所以平面 ……3分

(Ⅱ)解:因为平面

所以,因为是直角梯形,

,所以,又,所以平面,即是三棱锥的高  ……4分  

因为是棱的中点,所以

于是三棱锥的体积  ……3分

20、解:从5名同学中选出3名同学的基本事件空间为:

  

,共含有10个基本事件   ……3分

(Ⅰ)设事件为“同学被选取”,则事件包含6个基本事件,

      事件发生的概率为   ……3分

(Ⅱ)设事件为“同学和同学都被选取”,则事件包含3个基本事件,

      事件发生的概率为    ……3分

(Ⅲ)设事件为“同学和同学中至少有一个被选取”,则事件包含9个基本事件,事件发生的概率为   ……3分

 

 

21、解:(Ⅰ)由  ……2分

由点,0),(0,)知直线的方程为

于是可得直线的方程为    ……2分

因此,得

所以椭圆的方程为   ……2分

(Ⅱ)由(Ⅰ)知的坐标依次为(2,0)、

因为直线经过点,所以,得

即得直线的方程为  ……2分

因为,所以,即   ……1分

的坐标为,则

,即直线的斜率为4    ……2分

又点的坐标为,因此直线的方程为 ……1分

22、解:(Ⅰ),因为时取得极值,

所以是方程的根,即 ……2分

,又因为

所以的取值范围是    ……2分

(Ⅱ)当时,

      因为,当时,内单调递减……2分

      当时,,令解得

     ,令,解得

     于是当时,内单调递增,

内单调递减   ……2分

(Ⅲ)因为函数时有极值,所以有

消去,解之得,又,所以取

此时  ……2分

因此

可得时取极大值

时取极小值  ……2分

如图,方程有三个不相等的实数根,等价于直线与曲线

有三个不同的交点,由图象得  ……2分

 

 

 

 

 


同步练习册答案