(Ⅰ)同学被选取, 查看更多

 

题目列表(包括答案和解析)

从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分、其中第六组、第七组、第八组人数依次构成等差数列.

(1)求第六组、第七组的频率,并估算高三年级全体男生身高在180cm以上(含180cm)的人数;
(2)学校决定让这50人在运动会上组成一个高旗队,在这50人中要选身高在185cm以上(含185cm)的两人作为队长,求这两人在同一组的概率.

查看答案和解析>>

从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分、其中第六组、第七组、第八组人数依次构成等差数列.

(1)求第六组、第七组的频率,并估算高三年级全体男生身高在180cm以上(含180cm)的人数;
(2)学校决定让这50人在运动会上组成一个高旗队,在这50人中要选身高在185cm以上(含185cm)的两人作为队长,求这两人在同一组的概率.

查看答案和解析>>

从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分、其中第六组、第七组、第八组人数依次构成等差数列.

(1)求第六组、第七组的频率,并估算高三年级全体男生身高在180cm以上(含180cm)的人数;
(2)学校决定让这50人在运动会上组成一个高旗队,在这50人中要选身高在185cm以上(含185cm)的两人作为队长,求这两人在同一组的概率.

查看答案和解析>>

(本题6分)某学校组织课外活动小组,其中三个小组的人员分布如下表(每名同学只参加一个小组):

 
棋类小组
书法小组
摄影小组
高中
a
6
12
初中
7
4
18
学校要对这三个小组的活动效果进行抽样调查,按分层抽样的方法从小组成员中抽取6人,结果摄影小组被抽出3人。
(Ⅰ)求a的值;
(Ⅱ)从书法小组的人中,随机选出3人参加书法比赛,求这3人中初、高中学生都有的概率。

查看答案和解析>>

(本题6分)某学校组织课外活动小组,其中三个小组的人员分布如下表(每名同学只参加一个小组):
 
棋类小组
书法小组
摄影小组
高中
a
6
12
初中
7
4
18
学校要对这三个小组的活动效果进行抽样调查,按分层抽样的方法从小组成员中抽取6人,结果摄影小组被抽出3人。
(Ⅰ)求a的值;
(Ⅱ)从书法小组的人中,随机选出3人参加书法比赛,求这3人中初、高中学生都有的概率。

查看答案和解析>>

一、选择题(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

B

B

A

D

C

D

B

C

A

D

二、填空题(每小题4分,共16分)

13、120; 14、20; 15、;16、2.

三、解答题

17、解:(Ⅰ)由正弦定理得

  ……2分

,因为,所以,得   ……3分,因为

所以,又为三角形的内角,所以      ……2分

(Ⅱ),由 ……2分

,所以当时,取最大值  ……3分

 

18、解:(Ⅰ)设公差为,由,得

       ,因为数列{}的各项均为正数,

     所以得  ……3分  又,所以 ……2分

      由  ……1分

(Ⅱ)由(Ⅰ)得……2分

  于是

         ……4分

19、(Ⅰ)如图,连结,因为

分别是棱的中点,

所以……2分

因为平面不在平面

内,所以平面 ……3分

(Ⅱ)解:因为平面

所以,因为是直角梯形,

,所以,又,所以平面,即是三棱锥的高  ……4分  

因为是棱的中点,所以

于是三棱锥的体积  ……3分

20、解:从5名同学中选出3名同学的基本事件空间为:

  

,共含有10个基本事件   ……3分

(Ⅰ)设事件为“同学被选取”,则事件包含6个基本事件,

      事件发生的概率为   ……3分

(Ⅱ)设事件为“同学和同学都被选取”,则事件包含3个基本事件,

      事件发生的概率为    ……3分

(Ⅲ)设事件为“同学和同学中至少有一个被选取”,则事件包含9个基本事件,事件发生的概率为   ……3分

 

 

21、解:(Ⅰ)由  ……2分

由点,0),(0,)知直线的方程为

于是可得直线的方程为    ……2分

因此,得

所以椭圆的方程为   ……2分

(Ⅱ)由(Ⅰ)知的坐标依次为(2,0)、

因为直线经过点,所以,得

即得直线的方程为  ……2分

因为,所以,即   ……1分

的坐标为,则

,即直线的斜率为4    ……2分

又点的坐标为,因此直线的方程为 ……1分

22、解:(Ⅰ),因为时取得极值,

所以是方程的根,即 ……2分

,又因为

所以的取值范围是    ……2分

(Ⅱ)当时,

      因为,当时,内单调递减……2分

      当时,,令解得

     ,令,解得

     于是当时,内单调递增,

内单调递减   ……2分

(Ⅲ)因为函数时有极值,所以有

消去,解之得,又,所以取

此时  ……2分

因此

可得时取极大值

时取极小值  ……2分

如图,方程有三个不相等的实数根,等价于直线与曲线

有三个不同的交点,由图象得  ……2分

 

 

 

 

 


同步练习册答案