(Ⅱ)设点为(.0).点在椭圆上(与.均不重合).点在直线上.若直线的方程为.且.试求直线的方程. 查看更多

 

题目列表(包括答案和解析)

椭圆中心在原点,焦点在x轴上,离心率为
1
2
,椭圆左准线与x轴交于E(-4,0),过E点作不与y轴垂直的直线l与椭圆交于A、B两个不同的点(A在E,B之间)
(1)求椭圆方程;   (2)求△AOB面积的最大值; (3)设椭圆左、右焦点分别为
F1、F2,若有
F1A
F2B
,求实数λ,并求此时直线l的方程.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,点P在椭圆上,∠F1PF2=60°,设
|PF1|
|PF2|

(I)当λ=2时,求椭圆离心率e;
(II)当椭圆离心率最小时,PQ为过椭圆右焦点F2的弦,且|PQ|=
16
5
,求椭圆的方程.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=
1
2

(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,点P是其上的动点,
(1)当△PF1F2内切圆的面积最大时,求内切圆圆心的坐标;
(2)若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
左右两焦点分别为F1,F2,且离心率e=
6
3

(1)设E是直线y=x+2与椭圆的一个交点,求|EF1|+|EF2|取最小值时椭圆的方程;
(2)已知N(0,1),是否存在斜率为k的直线l与(1)中的椭圆交与不同的两点A,B,使得点N在线段AB的垂直平分线上,若存在,求出直线l在y轴上截距的范围;若不存在,说明理由.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),A1、A2、B1、B2分别为椭圆C的长轴与短轴的端点.
(1)设点M(x0,0),若当且仅当椭圆C上的点P在椭圆长轴顶点A1、A2处时,|PM|取得最大值与最小值,求x0的取值范围;
(2)若椭圆C上的点P到焦点距离的最大值为3,最小值为l,且与直线l:y=kx+m相交于A,B两点(A,B不是椭圆的左右顶点),并满足AA2⊥BA2.试研究:直线l是否过定点?若过定点,请求出定点坐标,若不过定点,请说明理由.

查看答案和解析>>

一、选择题(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

B

B

A

D

C

D

B

C

A

D

二、填空题(每小题4分,共16分)

13、120; 14、20; 15、;16、2.

三、解答题

17、解:(Ⅰ)由正弦定理得

  ……2分

,因为,所以,得   ……3分,因为

所以,又为三角形的内角,所以      ……2分

(Ⅱ),由 ……2分

,所以当时,取最大值  ……3分

 

18、解:(Ⅰ)设公差为,由,得

       ,因为数列{}的各项均为正数,

     所以得  ……3分  又,所以 ……2分

      由  ……1分

(Ⅱ)由(Ⅰ)得……2分

  于是

         ……4分

19、(Ⅰ)如图,连结,因为

分别是棱的中点,

所以……2分

因为平面不在平面

内,所以平面 ……3分

(Ⅱ)解:因为平面

所以,因为是直角梯形,

,所以,又,所以平面,即是三棱锥的高  ……4分  

因为是棱的中点,所以

于是三棱锥的体积  ……3分

20、解:从5名同学中选出3名同学的基本事件空间为:

  

,共含有10个基本事件   ……3分

(Ⅰ)设事件为“同学被选取”,则事件包含6个基本事件,

      事件发生的概率为   ……3分

(Ⅱ)设事件为“同学和同学都被选取”,则事件包含3个基本事件,

      事件发生的概率为    ……3分

(Ⅲ)设事件为“同学和同学中至少有一个被选取”,则事件包含9个基本事件,事件发生的概率为   ……3分

 

 

21、解:(Ⅰ)由  ……2分

由点,0),(0,)知直线的方程为

于是可得直线的方程为    ……2分

因此,得

所以椭圆的方程为   ……2分

(Ⅱ)由(Ⅰ)知的坐标依次为(2,0)、

因为直线经过点,所以,得

即得直线的方程为  ……2分

因为,所以,即   ……1分

的坐标为,则

,即直线的斜率为4    ……2分

又点的坐标为,因此直线的方程为 ……1分

22、解:(Ⅰ),因为时取得极值,

所以是方程的根,即 ……2分

,又因为

所以的取值范围是    ……2分

(Ⅱ)当时,

      因为,当时,内单调递减……2分

      当时,,令解得

     ,令,解得

     于是当时,内单调递增,

内单调递减   ……2分

(Ⅲ)因为函数时有极值,所以有

消去,解之得,又,所以取

此时  ……2分

因此

可得时取极大值

时取极小值  ……2分

如图,方程有三个不相等的实数根,等价于直线与曲线

有三个不同的交点,由图象得  ……2分

 

 

 

 

 


同步练习册答案