所以.当n≤8时.>0.当n=9时.=0.n>9时.<0. 查看更多

 

题目列表(包括答案和解析)

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>

设M={x|
2x-2x+3
>1
},N={x|x2+(a-8)x-8a≤0},命题p:x∈M,命题q:x∈N.
(Ⅰ)当a=-6时,试判断命题p是命题q的什么条件;
(Ⅱ)求a的取值范围,使命题p是命题q的一个必要但不充分条件.

查看答案和解析>>

某个命题与正整数n有关,如果当n=k(k∈N+)时命题成立,那么可推得当n=k+1时命题也成立. 现已知当n=7时该命题不成立,那么可推得(  )

查看答案和解析>>

已知函数f(x)=loga
1-mxx-1
(a>0,a≠1,m≠1)是奇函数.
(1)当x∈(n,a-2)时,函数f(x)的值域是(1,+∞),求实数a与n的值;
(2)令函数g(x)=-ax2+8(x-1)af(x)-5,a≥8时,存在最大实数t,使得x∈(1,t]-5≤g(x)≤5恒成立,请写出t与a的关系式.

查看答案和解析>>

已知数列{an}满足a1=2,an+1-an=n+1(n∈N*)且bn=2an-n2-10,数列{bn}的前n项和为Sn
(1)求数列{an}的通项公式;
(2)当n≥8时,求数列{|bn|}的前n项和Tn

查看答案和解析>>


同步练习册答案