(Ⅱ)设椭圆的左.右顶点分别为.在第二象限内取双曲线 查看更多

 

题目列表(包括答案和解析)

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.
(Ⅰ)若直线的斜率之积为,求椭圆的离心率;
(Ⅱ)若,证明直线的斜率 满足

查看答案和解析>>

设椭圆的左、右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.

(1)求椭圆的方程;

(2)求动点C的轨迹E的方程;

(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且 ,求直线MN的方程.

 

查看答案和解析>>

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(1)若直线的斜率之积为,求椭圆的离心率;

(2)对于由(1)得到的椭圆,过点的直线轴于点,交轴于点,若,求直线的斜率.

 

查看答案和解析>>

设椭圆的左、右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且,求直线MN的方程.

查看答案和解析>>


同步练习册答案