所以原方程可化为.解得. --9分 查看更多

 

题目列表(包括答案和解析)

如图,在△ABC中,AB=2,AC=BC=数学公式
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=数学公式S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).

附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=数学公式,y4=-数学公式
所以,原方程的解是y1=1,y2=-1,y3=数学公式,y4=-数学公式
再如x2-2=4数学公式,可设y=数学公式,用同样的方法也可求解.

查看答案和解析>>

如图,在△ABC中,AB=2,AC=BC=
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
 
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=,y4=-
所以,原方程的解是y1=1,y2=-1,y3=,y4=-
再如x2-2=4,可设y=,用同样的方法也可求解.

查看答案和解析>>

外交是内政的外延,它牵涉到国家的安全与国家的生存。现今世界连成一体,成功的外交能把本国很好地融入到这个整体中,从而使自身的形象和利益最大化。
下列材料反映了中国百年来外交的风雨历程,请结合材料和所学知识回答问题。
材料一:1793年英国马嘠尔尼使团来华,乾隆皇帝颁布上谕,宣称:“各处藩封到天朝进贡观光者,不特陪臣俱行三跪九叩之礼,即皇王亲王至,亦同此礼,今尔国王遣尔(指马嘠尔尼)前来祝嘏(福),自应遵天朝法度,免失尔国王祝厘纳贡之诚。”
——摘编自徐中约《中国近代史:1600—2000中国的奋斗》
材料二:鸦片战争后开放的通商口岸(如图)

材料三:新中国成立以来,在外交方面取得了辉煌的成就。截止2008年底,中国与171个国家建立了外交关系,共参加了130多个政府间国际组织,缔结了近20000项双边条约,参加了300多个多边条约,参加了24项联合国维和行动,派出维和官兵11063人次。                            ——摘自中国外交部编《中国外交》(2009年版)
材料四:进入新的世纪,中国以前所未有的深度和广度,参与到反恐、防扩散、应对气候变化等全球性问题的讨论和解决中,人们越来越频繁地使用“负责任的大国”来界定中国在国际上的角色。 
材料五:温家宝总理说:“我们要走一条和一些大国不一样的道路,这条道路就是和平崛起的道路。这是中国在总结世界和中国社会发展的历史和根据中国的现实情况作出的理性选择。”                                                           ——新华网
请回答:
(1)依据材料一指出当时清朝统治者的对外态度。(2分)
(2)依据材料二及所学知识指出我国当时的外交特点及其原因。(6分)  
(3)依据材料三及所学知识概括新中国外交的基本特点及其形成的主要原因。(6分)
(4)结合材料四及所学知识,举例说明改革开放以来中国成为国际社会“负责任大国”的主要外交活动。(4分,举两例即可)    
(5)坚持走和平发展道路与构建和谐世界是中国外交战略思想的发展与创新。请结合材料五及所学知识分析中国为什么要走和平崛起的道路?(8分)
(6)纵观中国百年来外交的风雨历程,你可得到什么认识或启示?(4分)

查看答案和解析>>

阅读下列材料并解决有关问题:

我们知道:数学公式,现在我们可以用这一结论来解含有绝对值的方程.例如,解方程|x+1|+|2x-3|=8时,可令x+1=0和2x-3=0,分别求得x=-1和,(称-1和数学公式分别为|x+1|和|2x-3|的零点值),在实数范围内,零点值x=-1和可将全体实数分成不重复且不遗漏的如下3种情况:①x<-1②数学公式数学公式,从而解方程|x+1|+|2x-3|=5可分以下三种情况:
①当x<-1时,原方程可化为-(x+1)-(2x-3)=8,解得x=-2.
②当数学公式时,原方程可化为(x+1)-(2x-3)=8,解得x=-4,但不符合数学公式,故舍去.
③当数学公式时,原方程可化为(x+1)+(2x-3)=8,解得数学公式
综上所述,方程|x+1|+|2x-3|=8的解为,x=-2和数学公式
通过以上阅读,请你解决以下问题:
(1)分别求出|x+2|和|3x-1|的零点值.
(2)解方程|x+2|+|3x-1|=9.

查看答案和解析>>

如图①,要设计一幅宽20cm、长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2χ,则每个竖彩条的宽为3χ.将横、竖彩条分别集中,则原问题转化为如图②的情况,得到矩形ABCD.
结合以上分析完成填空:
如图②,用含有χ的代数式表示:AB=   cm,AD=  cm.列出方程并完成本题解答。

查看答案和解析>>


同步练习册答案