2(x-1)-x=0. ---------------------3分解这个方程.得 查看更多

 

题目列表(包括答案和解析)

列方程解应用题(从中任选一题,多做不给分):
(A类6分)春运期间,汽车票上浮20%,上浮后从连云港到南京的票价为96元,求连云港到南京的原票价.
(B类7分)某村果园里,
1
3
的面积种植了梨树,
1
4
的面积种植了苹果树,其余5ha地种植了桃树.问这个村的果园共有多少ha?
(C类8分)某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败战绩积17分,那么该班共胜了几场比赛
我选择的是
 
类;解答过程如下:

查看答案和解析>>

列方程解应用题:
(1)初一(1)班共有45名同学,在学习几何图形时,同学们利用硬纸片做了很多立体模型,课代表统计时发现,男生平均每人做了4个,女生平均每人做5个,且男女生做的数量恰好相等.请问这个班有多少名男生?
(2)一个两位数,个位上的数字比十位上的数字小3,交换它们的位置得到的两位数是原两位数的七分之四,试求这个两位数.

查看答案和解析>>

列方程(组)解应用题:
为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场. 现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

(2010•保山)如图,已知直线l的解析式为y=-x+6,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线n从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t秒,运动过程中始终保持n∥l,直线n与x轴、y轴分别相交于C、D两点,线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S,当直线n与直线l重合时,运动结束.
(1)求A、B两点的坐标;
(2)求S与t的函数关系式及自变量t的取值范围;
(3)直线n在运动过程中,
①当t为何值时,半圆与直线l相切?
②是否存在这样的t值,使得半圆面积S=S梯形ABCD?若存在,求出t值.若不存在,说明理由.

查看答案和解析>>

(2010•保山)如图,已知直线l的解析式为y=-x+6,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线n从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t秒,运动过程中始终保持n∥l,直线n与x轴、y轴分别相交于C、D两点,线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S,当直线n与直线l重合时,运动结束.
(1)求A、B两点的坐标;
(2)求S与t的函数关系式及自变量t的取值范围;
(3)直线n在运动过程中,
①当t为何值时,半圆与直线l相切?
②是否存在这样的t值,使得半圆面积S=S梯形ABCD?若存在,求出t值.若不存在,说明理由.

查看答案和解析>>


同步练习册答案