⑴(或.-),⑵(或.-) 查看更多

 

题目列表(包括答案和解析)

(2013•闵行区一模)如图,对大于或等于2的正整数m的n次幂进行如下方式的“分裂”(其中m、n∈N*):例如72的“分裂”中最小的数是1,最大的数是13;若m3的“分裂”中最小的数是211,则m=
15
15

查看答案和解析>>

(2012•包头一模)如图,AB是底部B不可到达的一个塔型建筑物,A为塔的最高点.现需在对岸测出塔高AB,甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底B在同一水平面内的一条基线CD,使C,D,B三点不在同一条直线上,测出∠DCB及∠CDB的大小(分别用α,β表示测得的数据)以及C,D间的距离(用s表示测得的数据),另外需在点C测得塔顶A的仰角(用θ表示测量的数据),就可以求得塔离AB.乙同学的方法是:选一条水平基线EF,使E,F,B三点在同一条直线上.在E,F处分别测得塔顶A的仰角(分别用α,β表示测得的数据)以及E,F间的距离(用s表示测得的数据),就可以求得塔高AB.
请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:
①画出测量示意图;
②用所叙述的相应字母表示测量数据,画图时C,D,B按顺时针方向标注,E,F按从左到右的方向标注;
③求塔高AB.

查看答案和解析>>

(2013•绵阳二模)设m是一个正整数,对两个正整数a、b,若a-b=km(k∈Z,k≠0),我们称a、b模m同余,用符号a=b(Modm)表示; 在6=b(Modm)中,当
bm
∈N
,且m>1时,b的所有可取值为
2或3或4
2或3或4

查看答案和解析>>

(08年华师一附中二次压轴理)甲、乙两人玩猜子游戏,每次甲出1子,2子或3子,由乙猜.若乙猜中,则甲所出之子归乙;若乙未猜中,则乙付给甲1子.已知甲出1子、2子或3子的概率分别为.

(Ⅰ)若乙每次猜1子,2子,3子的概率均为,求乙每次赢得子数的期望;

(Ⅱ)不论乙每次猜1子,2子,3子的概率如何,在一次游戏中甲、乙两人谁获胜的概率更大?试计算并证明之.

查看答案和解析>>

(07年湖南卷文)(12分)

某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.

(Ⅰ)任选1名下岗人员,求该人参加过培训的概率;

(Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率.

查看答案和解析>>


同步练习册答案