题目列表(包括答案和解析)
设A是如下形式的2行3列的数表,
|
a |
b |
c |
|
d |
e |
f |
满足性质P:a,b,c,d,e,f
,且a+b+c+d+e+f=0
记
为A的第i行各数之和(i=1,2),
为A的第j列各数之和(j=1,2,3)记
为
中的最小值。
(1)对如下表A,求
的值
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)设数表A形如
|
1 |
1 |
-1-2d |
|
d |
d |
-1 |
其中
,求
的最大值
(3)对所有满足性质P的2行3列的数表A,求
的最大值。
【解析】(1)因为
,
,所以![]()
(2)
,![]()
因为
,所以
,![]()
所以![]()
当d=0时,
取得最大值1
(3)任给满足性质P的数表A(如图所示)
|
a |
b |
c |
|
d |
e |
f |
任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表
仍满足性质P,并且
,因此,不妨设
,
,![]()
由
得定义知,
,
,
,
从而![]()
![]()
所以,
,由(2)知,存在满足性质P的数表A使
,故
的最大值为1
【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力
已知
,函数![]()
(1)当
时,求函数
在点(1,
)的切线方程;
(2)求函数
在[-1,1]的极值;
(3)若在
上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中
,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有 ![]()
![]()
对a分类讨论
,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 当
时,
又
∴ 函数
在点(1,
)的切线方程为
--------4分
(Ⅱ)令
有 ![]()
![]()
①
当
即
时
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
极大值 |
|
极小值 |
|
故
的极大值是
,极小值是![]()
②
当
即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述
时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设
,![]()
对
求导,得![]()
∵
,
![]()
∴
在区间
上为增函数,则![]()
依题意,只需
,即
解得
或
(舍去)
则正实数
的取值范围是(![]()
,
)
设点
是抛物线![]()
![]()
的焦点,
是抛物线
上的
个不同的点(![]()
).
(1) 当
时,试写出抛物线
上的三个定点
、
、
的坐标,从而使得
;
(2)当
时,若
,
求证:
;
(3) 当
时,某同学对(2)的逆命题,即:
“若
,则
.”
开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);
② 对任意给定的大于3的正整数
,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);
③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).
【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.
【解析】第一问利用抛物线
的焦点为
,设
,
分别过
作抛物线
的准线
的垂线,垂足分别为
.
由抛物线定义得到
第二问设
,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
![]()
![]()
第三问中①取
时,抛物线
的焦点为
,
设
,
分别过![]()
作抛物线
的准线
垂线,垂足分别为![]()
.由抛物线定义得
![]()
![]()
![]()
![]()
,
则
,不妨取
;![]()
;![]()
;![]()
解:(1)抛物线
的焦点为
,设
,
分别过
作抛物线
的准线
的垂线,垂足分别为
.由抛物线定义得
![]()
![]()
因为
,所以
,
故可取![]()
![]()
满足条件.
(2)设
,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
![]()
![]()
又因为![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
时,抛物线
的焦点为
,
设
,
分别过![]()
作抛物线
的准线
垂线,垂足分别为![]()
.由抛物线定义得
![]()
![]()
![]()
![]()
,
则
,不妨取
;![]()
;![]()
;
,
则![]()
![]()
,![]()
![]()
.
故
,
,
,
是一个当
时,该逆命题的一个反例.(反例不唯一)
② 设
,分别过
作
抛物线
的准线
的垂线,垂足分别为
,
由
及抛物线的定义得
,即
.
因为上述表达式与点
的纵坐标无关,所以只要将这
点都取在
轴的上方,则它们的纵坐标都大于零,则
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(说明:本质上只需构造满足条件且
的一组
个不同的点,均为反例.)
③ 补充条件1:“点
的纵坐标
(
)满足
”,即:
“当
时,若
,且点
的纵坐标
(
)满足
,则
”.此命题为真.事实上,设
,
分别过
作抛物线
准线
的垂线,垂足分别为
,由
,
及抛物线的定义得
,即
,则
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命题为真.
补充条件2:“点
与点![]()
为偶数,
关于
轴对称”,即:
“当
时,若
,且点
与点![]()
为偶数,
关于
轴对称,则
”.此命题为真.(证略)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com