题目列表(包括答案和解析)
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)=g(x)
D.大小关系不能确定
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)=g(x)
D.大小关系不能确定
已知函数
的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数
的值;
(Ⅱ)求
在区间
上的最大值;
(Ⅲ)对任意给定的正实数
,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当
时,
,则
。
依题意得:
,即
解得
第二问当
时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当
时,
,则
。
依题意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①当
时,
,令
得![]()
当
变化时,
的变化情况如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
极小值 |
单调递增 |
极大值 |
|
又
,
,
。∴
在
上的最大值为2.
②当
时,
.当
时,
,
最大值为0;
当
时,
在
上单调递增。∴
在
最大值为
。
综上,当
时,即
时,
在区间
上的最大值为2;
当
时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若
,则
代入(*)式得:![]()
即
,而此方程无解,因此
。此时
,
代入(*)式得:
即
(**)
令
,则![]()
∴
在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于
,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数
,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上
一、选择题 ACCBC BBCCD
二、填空题:
,
,
,
,
,
,①②④
18(Ⅰ)由题意“
且
”表示“答完
题,第一题答对,第二题答错;或第一题答对,第二题也答对” 此时概率
…6分
(Ⅱ)P(
)=
=
, P(
)=
=
,………9分

-3
-1
1
3





P(
)=
=
,
P(
)=
=
∴
的分布列为
12分
∴
……14分
19解:(Ⅰ) 连接
交
于点
,连接
.
在
中,
分别为
中点,
.

平面
,
平面
,
平面
. …………(6分)
(Ⅱ) 法一:过
作
于
,由三垂线定理得
,
故∠
为二面角
的平面角. ……………………………………(9分)
令
,则
,又
,
在
△
中,
,
解得
。

当
时,二面角
的正弦值为
. ………………(14分)
法二:设
,取
中点
,连接
,
以
为坐标原点建立空间直角坐标系,如右图所示:
则
,
则
.
设平面
的法向量为
,平面
的法向量为
,
则有
,
,即
,
,
设
,则
,



,解得
.
即当
时,二面角
的正弦值为
. …………………(14分)
20.(1)
;
(2)轨迹方程为
(
)
(1)当
时,轨迹方程为
(
),表示抛物线弧段。
(2)当
时,轨迹方程为
,
A)当
表示椭圆弧段; B)当
时表示双曲线弧段。
21.
Ⅰ)
…………(2分)
令
,则
当
时,
;当
时 
故有极大值
…………(4分)
Ⅱ)∵
=a+
,x∈(0,e),
∈[
,+∞
(1)若a≥-
,则
≥0,从而f(x)在(0,e)上增函数.
∴f(x)max =f(e)=ae+1≥0.不合题意. …………………………………7分
(2)若a<-
,
>
a+
>0,即0<x<-
由
a+
<0,即-
<x≤e.
∴f(x)
=f(-
)=-1+ln(-
).
令-1+ln(-
)=-3,则ln(-
)=-2.∴-
=e
,
即a=-e2. ∵-e2<-
,∴a=-e2为所求. ……………………………10分
Ⅲ)由Ⅰ)结论,
=f(1)=-1.∴f(x)=-x+lnx≤-1,从而lnx≤x-1.
令g(x)=|f(x)|-
-
=x-lnx-
-
=x-(1+
)lnx-
……12分
(1)当0<x<2时,有g(x)≥x-(1+
)(x-1)-
=
-
>0.
(2)当x≥2时,g′(x)=1-[(-
)lnx+(1+
)?
]=
=
.
∴g(x)在[2,+∞
上增函数,∴g(x)≥g(2)=
综合(1)、(2)知,当x>0时,g(x)>0,即|f(x)|>
.
故原方程没有实解. ………………………………16分
22.证明:(I)
①当
, …………2分
②假设
,
则
时不等式也成立,
…………4分
(II)由
,
由
…………5分

又
…………7分
…………8分
(III)
,
, …………10分

的等比数列,…………12分

…………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com