即为⊙的直角坐标方程. 查看更多

 

题目列表(包括答案和解析)

在直角坐标系中,定义:(xnyn)
11
1-1
=(xn+1yn+1)
,即
xn+1=xn+yn
yn+1=xn-yn
(n∈N*)为点Pn(xn,yn)到点Pn+1(xn+1,yn+1)的一个变换.我们把它称为点变换(或矩阵变换).已知P1(1,0).
(1)求直线y=x在矩阵变换下的直线方程;
(2)设dn=|OPn|2(n∈N*),求证:dn为等比数列,并写出dn的通项公式;
(3)设P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是经过点变换得到的一列点.求数列xn,yn的通项公式.

查看答案和解析>>

在直角坐标系中,已知△AOB三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是
91
91

查看答案和解析>>

在直角坐标系中,已知△AOB三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是______.

查看答案和解析>>

在直角坐标系xOy中,已知△AOB三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是(  )
A.95B.91C.88D.75

查看答案和解析>>

在直角坐标系xOy中,已知△AOB三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是( )
A.95
B.91
C.88
D.75

查看答案和解析>>


同步练习册答案