8.如图甲所示.粗糙的足够长的竖直木杆上套有一个带电的小球.整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中.小球由静止开始下滑.在整个运动过程中小球的v~t图象如图乙所示.其中错误的是 查看更多

 

题目列表(包括答案和解析)

如图甲所示,粗糙的足够长的竖直木杆上套有一个带电的小球,整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中小球的v~t图象如图乙所示,其中错误的是(  )

查看答案和解析>>

如图甲所示,粗糙的足够长的竖直木杆上套有一个带电的小球,整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中小球的v~t图象如图乙所示,其中错误的是(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网
精英家教网

查看答案和解析>>

如图甲所示,粗糙的足够长的竖直木杆上套有一个带电的小球,整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中小球的v~t图象如图乙所示,其中错误的是( )
A.
B.
C.
D.

查看答案和解析>>

如图甲所示,水平面被竖直线PQ分为左右两部分,左部分光滑,范围足够大,上方存在水平向右的匀强电场.右部分粗糙,一质量为m=2kg,长为L的绝缘体制成的均匀带电的直棒AB置于水平面上,A端距PQ的距离为S=3m,给棒一个水平向左的初速v0,并以此时作为时间的起点,棒在最初2秒的运动图象如图乙所示.2秒末棒的B端刚好进入电场,已知直棒单位长度带电量为λ=0.1C/m,取重力加速度g=10m/s2
求:(1)直棒的长度;(2)匀强电场的场强E;(3)直棒最终停在何处?
精英家教网

查看答案和解析>>

如图甲所示,水平面被竖直线PQ分为左右两部分,左部分光滑,范围足够大,上方存在水平向右的匀强电场.右部分粗糙,一质量为m=2kg,长为L的绝缘体制成的均匀带电的直棒AB置于水平面上,A端距PQ的距离为S=3m,给棒一个水平向左的初速v0,并以此时作为时间的起点,棒在最初2秒的运动图象如图乙所示.2秒末棒的B端刚好进入电场,已知直棒单位长度带电量为λ=0.1C/m,取重力加速度g=10m/s2
求:(1)直棒的长度;(2)匀强电场的场强E;(3)直棒最终停在何处?

查看答案和解析>>

一、全题共计15分,每小题3分:                1.D     2.B    3.A    4.C    5.D

二、全题共计16分,每小题4分,漏选的得2分:    6.AD    7.BD    8. ABD     9.BD

三、全题共计42分

10.(8分)⑴20.30    ⑵①S1/2T;② 9.71~9.73  ③阻力作用  (每空2分)

11.(10分)第⑶问4分,其中作图2分;其余每小问2分.⑶半导体材料 ⑷4.0 、  0.40

 

 

        

 

 

 

 

 

12.(12分) ⑴D (3分)   ⑵AC(3分)

⑶这种解法不对.

错在没有考虑重力加速度与高度有关(2分)

正确解答:卫星绕地球做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有

G=mA ③    G=mB ④     由③④式,得 (4分)

13A.(12分) ⑴不变(2分)  50(2分)  ⑵a→b(2分) 增加(2分) ⑶(4分)

13B.(12分) ⑴C(3分 ) ⑵60°(2分) 偏右(2分)  ⑶(2分) 0.25s(3分)

13C.(12分)    ⑴质子 、α 、氮     ⑵ mv2/4      ⑶a 、  5×1013    (每空2分)

四、全题共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题.答案中必须明确写出数值和单位

14.(15分) 解:⑴A→C过程,由动能定理得: ………… (3分)

△R= R (1-cos37°)………………  (1分) ∴ vc=14m/s ……………………  (1分)

  ⑵在C点,由牛顿第二定律有: ……(2分)

∴ Fc=3936N …………………………………………………………………………( 2分)

    由牛顿第三定律知,运动员在C点时轨道受到的压力大小为3936N. …………… (1分)

⑶设在空中飞行时间为t,则有:tan37°=  …………………    ( 3分)

 ∴t = 2.5s   (t =-0.4s舍去)……………………………………………………( 2分)

 

 

 

15.(16分) 解:⑴垂直AB边进入磁场,由几何知识得:粒子离开电场时偏转角为30°

………(2分)    

………  (1分)     ∴………(2分)

由几何关系得:    在磁场中运动半径……(2分)

       ……………………………(2分)

……………(1分 ) 方向垂直纸面向里……………………(1分)

⑶当粒子刚好与BC边相切时,磁感应强度最小,由几何知识知粒子的运动半径r2为:

     ………( 2分 )   ………1分   ∴……… 1分

即:磁感应强度的最小值为………(1分)

16.(16分)

解:⑴据能量守恒,得  △E = mv02 -m()2= mv02-----------(3分)

⑵在底端,设棒上电流为I,加速度为a,由牛顿第二定律,则:

(mgsinθ+BIL)=ma1--------------------------(1分)

由欧姆定律,得I=---------------(1分)    E=BLv0---------------------(1分)

由上述三式,得a1 =  gsinθ + ---------------------(1分)

∵棒到达底端前已经做匀速运动∴mgsinθ= ------------------------------(1分)

代入,得a1 = 5gsinθ-----------------------------------------(2分)

(3)选沿斜面向上为正方向,上升过程中的加速度,上升到最高点的路程为S,

a = -(gsinθ + )-----------------------(1分)

取一极短时间△t,速度微小变化为△v,由△v = a△t,得

△     v = -( gsinθ△t+B2L2v△t/mR)-----------(1分)

其中,v△t = △s--------------------------(1分)

在上升的全过程中

∑△v = -(gsinθ∑△t+B2L2∑△s/mR)

即          0-v0= -(t0gsinθ+B2L2S/mR)-------------(1分)

∵H=S?sinθ       且gsinθ= -------------------(1分)

∴  H =(v02-gv0t0sinθ)/4g-----------------(1分)

 

 

 

 


同步练习册答案