(2)弦切角定理:弦切角度数等于它所夹的弧的度数的一半. 查看更多

 

题目列表(包括答案和解析)

(2012•南京二模)情境一
我们知道:顶点在圆上,并且两边都和圆相交的角叫做圆周角.
我们还知道:①圆心角的度数等于与它所对的弧的度数,②同弧所对的圆周角相等,都等于该弧所对的圆心角的一半.由此,小明得到一个正确的结论:圆周角的度数等于它所对的弧的度数的一半.如图1,∠LMN=
1
2
LN

问题1  填空:如图1,如果
LN
的度数是80,那么∠LMN的度数是
40
40

情境二
小明把顶点在圆外,并且两边都和圆相交的角叫圆外角,并继续探索.
如图2,∵∠PTQ是△OPT的一个外角,
∴∠PTQ=∠O+∠P.
∴∠O=∠PTQ-∠P.
∵圆周角的度数等于它所对的弧的度数的一半(已在情境一中证明),
∴∠PTQ=
1
2
PQ
,∠P=
1
2
RT

∴∠O=∠PTQ-∠P=
1
2
PQ
-
1
2
RT
=
1
2
PQ
-
RT
).
经历了上述探索、证明过程,小明发现了“圆外角的度数等于它所夹的较大弧的度数减去较小弧的度数所得差的一半”这个正确结论.
问题2  填空:如图2,如果
PQ
=80°,
RT
=20°,那么∠O=
30
30
°.
问题3  类比情境二的内容,请你就角的顶点在圆内的情况进行探索.写出你的发现,并证明你的结论.

查看答案和解析>>

类比学习:
我们已经知道,顶点在圆上,且角的两边都和圆相交的角叫做圆周角,如图1,∠APB就是圆周角,弧AB是∠APB所夹的弧.
类似的,我们可以把顶点在圆外,且角的两边都和圆相交的角叫做圆外角,如图2,∠APB就是圆外角,弧AB和弧CD是∠APB所夹的弧,
新知探索:
图(2)中,弧AB和弧CD度数分别为80°和30°,∠APB=
25
25
°,
归纳总结:
(1)圆周角的度数等于它所夹的弧的度数的一半;
(2)圆外角的度数等于
所夹两弧的度数差的一半
所夹两弧的度数差的一半

新知应用:
直线y=-x+m与直线y=-
3
3
x+2相交于y轴上的点C,与x轴分别交于点A、B.经过A、B、C三点作⊙E,点P是第一象限内⊙E外的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,
设∠APC=θ.
①求A点坐标;         ②求⊙E的直径;
③连接MN,求线段MN的长度(可用含θ的三角函数式表示).

查看答案和解析>>

类比学习:
我们已经知道,顶点在圆上,且角的两边都和圆相交的角叫做圆周角,如图1,∠APB就是圆周角,弧AB是∠APB所夹的弧.
类似的,我们可以把顶点在圆外,且角的两边都和圆相交的角叫做圆外角,如图2,∠APB就是圆外角,弧AB和弧CD是∠APB所夹的弧,
新知探索:
图(2)中,弧AB和弧CD度数分别为80°和30°,∠APB=______°,
归纳总结:
(1)圆周角的度数等于它所夹的弧的度数的一半;
(2)圆外角的度数等于______.
新知应用:
直线y=-x+m与直线y=x+2相交于y轴上的点C,与x轴分别交于点A、B.经过A、B、C三点作⊙E,点P是第一象限内⊙E外的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,
设∠APC=θ.
①求A点坐标;         ②求⊙E的直径;
③连接MN,求线段MN的长度(可用含θ的三角函数式表示).

查看答案和解析>>

情境一

我们知道:顶点在圆上,并且两边都和圆相交的角叫做圆周角.我们还知道:①圆心角的度数等于与它所对的弧的度数,②同弧所对的圆周角相等,都等于该弧所对的圆心角的一半.由此,小明得到一个正确的结论:圆周角的度数等于它所对的弧的度数的一半.如图1,∠LMN

问题1  填空:如图1,如果的度数是80,那么∠LMN的度数是______

1

情境二

小明把顶点在圆外,并且两边都和圆相交的角叫圆外角,并继续探索.

如图2,∵∠PTQ是△OPT的一个外角,

∴∠PTQ=∠O+∠P

∴∠O=∠PTQ -∠P

∵圆周角的度数等于它所对的弧的度数的一半(已在情境一中

证明),

∴∠PTQ,∠P

∴∠O=∠PTQ -∠P(). 

经历了上述探索、证明过程,小明发现了“圆外角的度数等于它所夹的较大弧的度数减去较小弧的度数所得差的一半”这个正确结论.

问题2  填空:如图2,如果=80°,=20°,那么∠O______°.

问题3  类比情境二的内容,请你就角的顶点在圆内的情况进行探索.写出你的发现,并证明你的结论.

查看答案和解析>>

情境一
我们知道:顶点在圆上,并且两边都和圆相交的角叫做圆周角.
我们还知道:①圆心角的度数等于与它所对的弧的度数,②同弧所对的圆周角相等,都等于该弧所对的圆心角的一半.由此,小明得到一个正确的结论:圆周角的度数等于它所对的弧的度数的一半.如图1,∠LMN=
问题1  填空:如图1,如果的度数是80,那么∠LMN的度数是______.
情境二
小明把顶点在圆外,并且两边都和圆相交的角叫圆外角,并继续探索.
如图2,∵∠PTQ是△OPT的一个外角,
∴∠PTQ=∠O+∠P.
∴∠O=∠PTQ-∠P.
∵圆周角的度数等于它所对的弧的度数的一半(已在情境一中证明),
∴∠PTQ=,∠P=
∴∠O=∠PTQ-∠P=-=).
经历了上述探索、证明过程,小明发现了“圆外角的度数等于它所夹的较大弧的度数减去较小弧的度数所得差的一半”这个正确结论.
问题2  填空:如图2,如果=80°,=20°,那么∠O=______°.
问题3  类比情境二的内容,请你就角的顶点在圆内的情况进行探索.写出你的发现,并证明你的结论.

查看答案和解析>>


同步练习册答案