简解 由题意.. 查看更多

 

题目列表(包括答案和解析)

在函数的图象上有三点,横坐标分别为其中

⑴求的面积的表达式;

⑵求的值域.

【解析】由题意利用分割可先表示三角形ABC的面积,然后应用对数运算性质及二次函数的性质求解函数的最大值,属于知识的简单综合.

 

查看答案和解析>>

如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:

(Ⅰ) CD=BC;

(Ⅱ)△BCD∽△GBD.

【命题意图】本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.

【解析】(Ⅰ) ∵D,E分别为AB,AC的中点,∴DE∥BC,

∵CF∥AB,   ∴BCFD是平行四边形,

∴CF=BD=AD,   连结AF,∴ADCF是平行四边形,

∴CD=AF,

∵CF∥AB, ∴BC=AF, ∴CD=BC;

(Ⅱ) ∵FG∥BC,∴GB=CF,

由(Ⅰ)可知BD=CF,∴GB=BD,

∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD

 

查看答案和解析>>

若定义在D上的函数y=f(x)满足条件:存在实数a,b(a<b)且,使得:(1)任取x0∈[a,b],有f(x0)=C(C是常数);(2)对于D内任意y0,当y0[a,b],总有f(y0)<C.我们将满足上述两条件的函数f(x)称为“平顶型”函数,称C为“平顶高度”,称b-a为“平顶宽度”.根据上述定义,解决下列问题:

(1)函数f(x)=-|x+2|-|x-3|是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由.

(2)已知是“平顶型”函数,求出m,n的值.

(3)对于(2)中的函数f(x),若f(x)=kx在x∈[-2,+∞)上有两个不相等的根,求实数k的取值范围.

查看答案和解析>>

若定义在D上的函数y=f(x)满足条件:存在实数a,b(a<b)且[a,b]D,使得:(1)任取x0∈[a,b],有f(x0)=C(C是常数);

(2)对于D内任意y0,当y0[a,b],总有f(y0)<C.

我们将满足上述两条件的函数f(x)称为“平顶型”函数,称C为“平顶高度”,称b-a为“平顶宽度”.根据上述定义,解决下列问题:

(1)函数f(x)=-|x+2|-|x-3|是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由.

(2)求实数n的值,使函数是“平顶型”函数.

(3)对于(2)中的函数f(x),若f(x)=kx在x∈[-2,+∞)上有两个不相等的根,求实数k的取值范围.

查看答案和解析>>

已知分别为三个内角,,的对边,.

(Ⅰ)求

(Ⅱ)若=2,的面积为,求.

【命题意图】本题主要考查正余弦定理应用,是简单题.

【解析】(Ⅰ)由及正弦定理得

   

由于,所以

,故.

(Ⅱ) 的面积==,故=4,

 故=8,解得=2

 

查看答案和解析>>


同步练习册答案