21. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

一.             选择题(每小题5分)

题号

1

2

3

4

5

6

7

8

9

10

答案

A

B

D

C

D

B

C

B

C

A

 

二.             填空题(每小题5分)

11.       12。     13。-1       14。       15。

三.             解答题

……………2分

且2R=,由正弦定理得:

化简得:                       ……………4分

由余弦定理:

……………11分

所以,……………12分

17.解:(I)记事件A=“该单位所派的选手都是男职工” ……………1分

则P(A)=         ……………3分

(II)记事件B=“该单位男职工、女职工选手参加比赛” ……………4分

则P(B)=……………7分

(III)设该单位至少有一名选手获奖的概率为P,则

……………12分

18.(解法一)(I)取AB的中点为Q,连接PQ,则,所以,为AC与BD所成角……………2分

      

又CD=BD=1,,而PQ=1,DQ=1

……………4分

 

(II)过D作,连接CR,

……………6分

……………8分

……………9分

(解法二)(I)如图,以D为坐标原点,DB、AD、DC所在直线分别为x,y,z轴建立直角坐标系。则A(),C(0,0,1),B(1,0,0),P(),D(0,0,0)

 

……2分

所以,异面直线AC与BD所成角的余弦值为……………4分

(II)面DAB的一个法向量为………5分

设面ABC的一个法向量,则

,取,……………7分

……………8分

…………9分

(III)不存在。若存在S使得AC,则,与(I)矛盾。故不存在…12分

19.解:(I)在区间上递减,其导函数……………1分

……………4分

是函数在区间上递减的必要而不充分的条件……………5分

(II)

      ……………6分

当a>0时,函数在()上递增,在上递减,在上递增,故有

……………9分

当a〈0时,函数上递增,只要

,则…………11分

所以上递增,又

不能恒成立。

故所求的a的取值范围为……………12分

20.解:(I)由条件,M到F(1,0)的距离等于到直线 x= -1的距离,所以,曲线C是以F为焦点、直线 x= -1为准线的抛物线,其方程为……………3分

(II)设,代入得:……………5分

由韦达定理

……………6分

,只要将A点坐标中的换成,得……7分

 

……………8分

所以,最小时,弦PQ、RS所在直线的方程为

……………9分

(III),即A、T、B三点共线。

是否存在一定点T,使得,即探求直线AB是否过定点。

由(II)知,直线AB的方程为………10分

直线AB过定点(3,0).……………12分

故存在一定点T(3,0),使得……………13分

21.解:(I)因为曲线在处的切线与平行

……………4分

   , 

(III)。由(II)知:=

,从而……………11分

 


同步练习册答案