18.已知点A.试在y轴和直线y=x上各取一点B.C.使△ABC的周长最小. 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:
x2
a2
+
y2
b2
=1.(a>b>0)
,其中短轴长和焦距相等,且过点M(2,
2
)

(1)求椭圆的标准方程;
(2)若P(x0,y0)在椭圆C的外部,过P做椭圆的两条切线PM、PN,其中M、N为切点,则MN的方程为
x0x
a2
+
y0y
b2
=1
.已知点P在直线x+y-4=0上,试求椭圆右焦点F到直线MN的距离的最小值.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1.(a>b>0)
,其中短轴长和焦距相等,且过点M(2,
2
)

(1)求椭圆的标准方程;
(2)若P(x0,y0)在椭圆C的外部,过P做椭圆的两条切线PM、PN,其中M、N为切点,则MN的方程为
x0x
a2
+
y0y
b2
=1
.已知点P在直线x+y-4=0上,试求椭圆右焦点F到直线MN的距离的最小值.

查看答案和解析>>

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>

已知点O为坐标原点,圆C过点(1,1)和点(-2,4),且圆心在y轴上.
(1)求圆C的标准方程;
(2)如果过点P(1,0)的直线l与圆C有公共点,求直线l的斜率k的取值范围;
(3)如果过点P(1,0)的直线l与圆C交于A、B两点,且|AB|=2
3
,试求直线l的方程.

查看答案和解析>>

1―10.CAACB  CCCDB,11.(1,1),12.(-2,3),13.5,14.D=E,15.m>-1/2

16.因为x2-y2=0表示过原点的两条互相垂直的直线:y=x,y=-x,(x-a)2+y2=1表示圆心为C(a,0),半径为1的动圆,本题讨论方程组有实数解的问题即讨论圆与直线有公共点的问题。(1)-≤a≤;(2)当-<a<-1或-1<a<1或1<a<时有四组实数解,当a=±1时,有三组实数解,当a=±时,有两组实数解,当a<-或a>时无实数解。

17.以直线AB为x轴,线段AB的垂直平分线为y轴建立直角坐标系。设A(-5,0),则B(5,0),在平面内任取一点P(x,y),设从A运货物到P的运费为2a元/km,则从B运到P的费用是a元/km,若P地居民选择在A地购买此商品,则

即P点在圆C

的内部.换言之,圆C内部的居民应在A地购买,同理可推得圆C外部的应在B地购物,圆C上的居民可随意选择A、B两地之一购物。

18.尝试使用对称法,如图作A点关于y轴

的对称点A1,再作A点关于y=x的对称点A2

在y轴和y=x上公别取点B、 C,则|BA|=|BA1|,

|AC|=|A2C|,于是△ABC的周长

|AB|+|BC|+|CA|=|A1B|+|BC|+|CA2|,

从而将问题转化为在y轴,y=x上各取一点,使

折线A1BCA2的长度最小。B(0,-17/5)和C(-17/8,-17/8)

19.(1)配方得圆心,将心坐标消去m可得直线a:x-3y-3=0

   (2)设与直线a平行的直线c:x-3y+b=0(b≠-3),则圆心到直线a的距离为

,∵圆的半径r=5,∴当d<r时,直线与圆相交,当d=r时,直线与圆相切,当d>r时直线与圆相离。(3)对于任一条平行于a且与圆相交的直线的直线c,由于圆心到直线c的距离都与m无关,所以弦长与m无关。

20.△ABC为直角三角形,如国图建立直角坐标系,

则A(0,0)、B(4,0)、C(0,3),设内切圆半径

为r,则r=1/2(|OC|+|OB|-|BC|)=1,故内切圆方程为

(x-1)2+(y-1)2=1,可设P点坐标(1+Cosα,1+Sinα)

则以PA、PB、PC为直径的三个圆面积之和S=(10-Cosα)

当Cosα=-1时,Smax=5.5π,

当Cosα=1时, Smin=4.5π.

 


同步练习册答案