设.时..此函数g(t)单调递减.时.>0,此函数g(t)单调递增.∴y的取值范围是.∴=0在[-1.1]上有解ó∈或.建议:从高考题来看.该考点关键是掌握函数零点的性质.抓住零点与相应方程的根的联系和相应函数图象与x轴交点间的联系.学会用函数的图象研究零点的分布. 查看更多

 

题目列表(包括答案和解析)

给出函数数学公式(x∈R)
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当数学公式时,可以将f(x)化成数学公式的形式,运用基本不等式求f(x)的最小值及此时x的取值;
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记数学公式,利用基本不等式研究函数F(x)的最值问题.

查看答案和解析>>

(2006•宝山区二模)给出函数f(x)=
x2+4
+tx
(x∈R).
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当t=
1
2
时,可以将f(x)化成f(x)=a(
x2+4
+x)+b(
x2+4
-x)
的形式,运用基本不等式求f(x)的最小值及此时x的取值;
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记F(x)=
g(x)
+h(x)
,利用基本不等式研究函数F(x)的最值问题.

查看答案和解析>>


同步练习册答案